Normalized defining polynomial
\( x^{18} + 3 x^{16} + 6 x^{12} + 9 x^{10} - 81 x^{8} - 63 x^{6} + 135 x^{4} + 81 x^{2} - 27 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8187922952619753996288=2^{30}\cdot 3^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{9} a^{12}$, $\frac{1}{18} a^{13} - \frac{1}{18} a^{12} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{36} a^{14} + \frac{1}{36} a^{12} - \frac{1}{12} a^{10} + \frac{1}{12} a^{8} - \frac{1}{6} a^{6} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{72} a^{15} - \frac{1}{72} a^{14} + \frac{1}{72} a^{13} - \frac{1}{72} a^{12} + \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{1}{12} a^{7} - \frac{1}{12} a^{6} + \frac{3}{8} a^{3} - \frac{3}{8} a^{2} + \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{23472} a^{16} + \frac{67}{5868} a^{14} + \frac{151}{5868} a^{12} + \frac{1}{24} a^{10} + \frac{329}{7824} a^{8} + \frac{547}{3912} a^{6} + \frac{1003}{2608} a^{4} - \frac{103}{1304} a^{2} + \frac{187}{2608}$, $\frac{1}{46944} a^{17} - \frac{1}{46944} a^{16} + \frac{67}{11736} a^{15} - \frac{67}{11736} a^{14} + \frac{151}{11736} a^{13} - \frac{151}{11736} a^{12} + \frac{1}{48} a^{11} - \frac{1}{48} a^{10} + \frac{329}{15648} a^{9} - \frac{329}{15648} a^{8} + \frac{547}{7824} a^{7} - \frac{547}{7824} a^{6} + \frac{1003}{5216} a^{5} - \frac{1003}{5216} a^{4} - \frac{103}{2608} a^{3} + \frac{103}{2608} a^{2} + \frac{187}{5216} a - \frac{187}{5216}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4683.37860456 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 9216 |
| The 96 conjugacy class representatives for t18n544 are not computed |
| Character table for t18n544 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.1.648.1, 9.3.272097792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.12.30.112 | $x^{12} - 6 x^{10} + x^{8} + 4 x^{6} + 3 x^{4} + 2 x^{2} + 3$ | $4$ | $3$ | $30$ | 12T134 | $[2, 2, 2, 3, 7/2, 7/2, 7/2]^{3}$ | |
| 3 | Data not computed | ||||||