Normalized defining polynomial
\( x^{18} - 9 x^{17} + 36 x^{16} - 84 x^{15} + 117 x^{14} - 63 x^{13} - 126 x^{12} + 405 x^{11} - 549 x^{10} + 248 x^{9} + 441 x^{8} - 981 x^{7} + 834 x^{6} - 171 x^{5} - 783 x^{4} + 1269 x^{3} - 36 x^{2} - 549 x + 166 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(808432815650446861638683444433=3^{24}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{4}$, $\frac{1}{12} a^{14} + \frac{1}{12} a^{13} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{12} a^{5} - \frac{5}{12} a^{4} + \frac{5}{12} a^{2} + \frac{5}{12} a - \frac{1}{2}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} + \frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{4} a^{7} + \frac{1}{12} a^{6} - \frac{1}{2} a^{5} + \frac{5}{12} a^{4} + \frac{5}{12} a^{3} + \frac{1}{12} a + \frac{1}{6}$, $\frac{1}{34116} a^{16} - \frac{2}{8529} a^{15} + \frac{61}{8529} a^{14} - \frac{392}{8529} a^{13} - \frac{691}{8529} a^{12} + \frac{622}{8529} a^{11} - \frac{553}{5686} a^{10} - \frac{236}{2843} a^{9} + \frac{408}{2843} a^{8} - \frac{3806}{8529} a^{7} - \frac{3157}{17058} a^{6} - \frac{6007}{17058} a^{5} - \frac{2591}{8529} a^{4} + \frac{368}{8529} a^{3} - \frac{247}{17058} a^{2} - \frac{3687}{11372} a + \frac{1689}{5686}$, $\frac{1}{3445716} a^{17} + \frac{7}{574286} a^{16} - \frac{2869}{574286} a^{15} + \frac{46189}{1148572} a^{14} + \frac{325385}{3445716} a^{13} + \frac{80677}{574286} a^{12} + \frac{470771}{3445716} a^{11} - \frac{404701}{3445716} a^{10} - \frac{258833}{1722858} a^{9} - \frac{1058303}{3445716} a^{8} + \frac{36991}{1148572} a^{7} - \frac{51475}{287143} a^{6} - \frac{411227}{1148572} a^{5} + \frac{930359}{3445716} a^{4} - \frac{115683}{287143} a^{3} + \frac{148435}{1722858} a^{2} - \frac{1410031}{3445716} a + \frac{79927}{1722858}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 250225810.428 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $F_9$ |
| Character table for $F_9$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 9.1.218070794717793.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |