Normalized defining polynomial
\( x^{18} - 7 x^{17} + 28 x^{16} - 70 x^{15} + 155 x^{14} - 272 x^{13} + 617 x^{12} - 1813 x^{11} + 6137 x^{10} - 13773 x^{9} + 19699 x^{8} + 2327 x^{7} - 94314 x^{6} + 278632 x^{5} - 489075 x^{4} + 602875 x^{3} - 513078 x^{2} + 281383 x - 81229 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(794618104817141695294816409=7^{12}\cdot 41^{3}\cdot 97^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{71} a^{15} + \frac{11}{71} a^{14} - \frac{21}{71} a^{13} + \frac{33}{71} a^{12} + \frac{5}{71} a^{11} - \frac{18}{71} a^{10} + \frac{9}{71} a^{9} - \frac{30}{71} a^{8} - \frac{17}{71} a^{7} + \frac{32}{71} a^{6} + \frac{31}{71} a^{5} - \frac{29}{71} a^{4} - \frac{15}{71} a^{3} - \frac{15}{71} a^{2} - \frac{16}{71} a - \frac{22}{71}$, $\frac{1}{71} a^{16} - \frac{20}{71} a^{13} - \frac{3}{71} a^{12} - \frac{2}{71} a^{11} - \frac{6}{71} a^{10} + \frac{13}{71} a^{9} + \frac{29}{71} a^{8} + \frac{6}{71} a^{7} + \frac{34}{71} a^{6} - \frac{15}{71} a^{5} + \frac{20}{71} a^{4} + \frac{8}{71} a^{3} + \frac{7}{71} a^{2} + \frac{12}{71} a + \frac{29}{71}$, $\frac{1}{95361707464662462280630876473899186744909} a^{17} + \frac{8227046649127952069960895366249993281}{2217714127085173541410020383113934575463} a^{16} - \frac{54563259068230220291563047369046737375}{95361707464662462280630876473899186744909} a^{15} - \frac{43119191456665910490671877862884299237931}{95361707464662462280630876473899186744909} a^{14} - \frac{25773333075698686414595796999615800449718}{95361707464662462280630876473899186744909} a^{13} + \frac{8106160938204472395702734797214051028750}{95361707464662462280630876473899186744909} a^{12} - \frac{38300516695930377786961054531760041878226}{95361707464662462280630876473899186744909} a^{11} + \frac{5818264857903702459450543304763636875630}{95361707464662462280630876473899186744909} a^{10} + \frac{9128808695503427947288167258307559903822}{95361707464662462280630876473899186744909} a^{9} - \frac{490431905256825351081793775222272318165}{2217714127085173541410020383113934575463} a^{8} - \frac{31570988037429676377322348002281432449834}{95361707464662462280630876473899186744909} a^{7} - \frac{8586184767953349702324264837052360016084}{95361707464662462280630876473899186744909} a^{6} - \frac{25641167424301695941632654705720739074778}{95361707464662462280630876473899186744909} a^{5} + \frac{8810824686815834563271336752016954991246}{95361707464662462280630876473899186744909} a^{4} + \frac{11006369097396472983503619253457800059442}{95361707464662462280630876473899186744909} a^{3} + \frac{43068815169098239655666184646723546459537}{95361707464662462280630876473899186744909} a^{2} - \frac{2503744550140587328670740182974177514254}{95361707464662462280630876473899186744909} a + \frac{15634804845672516049248415776457109222139}{95361707464662462280630876473899186744909}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 506566.920161 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n767 are not computed |
| Character table for t18n767 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.5.467890073.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.3.0.1 | $x^{3} - x + 13$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 41.3.0.1 | $x^{3} - x + 13$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.3.4 | $x^{4} + 12125$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |