Properties

Label 18.2.78692816150...0848.1
Degree $18$
Signature $[2, 8]$
Discriminant $2^{19}\cdot 3^{36}$
Root discriminant $18.71$
Ramified primes $2, 3$
Class number $1$
Class group Trivial
Galois group $C_2\times C_3:S_4$ (as 18T66)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, 0, 36, 0, 54, 0, -21, 0, -117, 0, 36, 0, 75, 0, 36, 0, 9, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 9*x^16 + 36*x^14 + 75*x^12 + 36*x^10 - 117*x^8 - 21*x^6 + 54*x^4 + 36*x^2 - 8)
 
gp: K = bnfinit(x^18 + 9*x^16 + 36*x^14 + 75*x^12 + 36*x^10 - 117*x^8 - 21*x^6 + 54*x^4 + 36*x^2 - 8, 1)
 

Normalized defining polynomial

\( x^{18} + 9 x^{16} + 36 x^{14} + 75 x^{12} + 36 x^{10} - 117 x^{8} - 21 x^{6} + 54 x^{4} + 36 x^{2} - 8 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(78692816150593075150848=2^{19}\cdot 3^{36}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.71$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{44} a^{12} + \frac{3}{22} a^{10} + \frac{5}{44} a^{8} - \frac{1}{2} a^{7} + \frac{3}{22} a^{6} + \frac{9}{44} a^{4} - \frac{1}{2} a^{3} + \frac{2}{11} a^{2} + \frac{1}{11}$, $\frac{1}{44} a^{13} - \frac{5}{44} a^{11} + \frac{5}{44} a^{9} + \frac{17}{44} a^{7} - \frac{1}{2} a^{6} - \frac{13}{44} a^{5} - \frac{1}{2} a^{4} + \frac{19}{44} a^{3} - \frac{9}{22} a$, $\frac{1}{44} a^{14} - \frac{9}{44} a^{10} - \frac{1}{22} a^{8} + \frac{17}{44} a^{6} - \frac{1}{2} a^{5} + \frac{5}{11} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{5}{11}$, $\frac{1}{44} a^{15} + \frac{1}{22} a^{11} - \frac{1}{22} a^{9} - \frac{4}{11} a^{7} + \frac{5}{11} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{22} a$, $\frac{1}{318296} a^{16} + \frac{647}{318296} a^{14} + \frac{11}{7234} a^{12} + \frac{19507}{318296} a^{10} - \frac{1411}{7234} a^{8} - \frac{1}{2} a^{7} + \frac{32611}{318296} a^{6} - \frac{35357}{318296} a^{4} - \frac{1}{2} a^{3} - \frac{36695}{79574} a^{2} - \frac{38347}{79574}$, $\frac{1}{318296} a^{17} + \frac{647}{318296} a^{15} + \frac{11}{7234} a^{13} + \frac{19507}{318296} a^{11} - \frac{1411}{7234} a^{9} - \frac{126537}{318296} a^{7} + \frac{123791}{318296} a^{5} - \frac{1}{2} a^{4} + \frac{1546}{39787} a^{3} - \frac{1}{2} a^{2} - \frac{38347}{79574} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 33370.592052 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_3:S_4$ (as 18T66):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 144
The 18 conjugacy class representatives for $C_2\times C_3:S_4$
Character table for $C_2\times C_3:S_4$

Intermediate fields

3.1.972.1, 3.1.108.1, 3.1.972.2, 3.1.243.1, 6.2.472392.1, 9.1.24794911296.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.11.5$x^{6} + 6$$6$$1$$11$$D_{6}$$[3]_{3}^{2}$
2.12.8.1$x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$$3$$4$$8$$C_3 : C_4$$[\ ]_{3}^{4}$
3Data not computed