Properties

Label 18.2.78515404645...6448.1
Degree $18$
Signature $[2, 8]$
Discriminant $2^{51}\cdot 3^{20}$
Root discriminant $24.16$
Ramified primes $2, 3$
Class number $1$
Class group Trivial
Galois group $PSU(3,2)$ (as 18T35)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![68, 48, 54, 456, 288, -528, -618, -216, 78, 200, 147, 96, 60, -24, -12, 0, -6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^16 - 12*x^14 - 24*x^13 + 60*x^12 + 96*x^11 + 147*x^10 + 200*x^9 + 78*x^8 - 216*x^7 - 618*x^6 - 528*x^5 + 288*x^4 + 456*x^3 + 54*x^2 + 48*x + 68)
 
gp: K = bnfinit(x^18 - 6*x^16 - 12*x^14 - 24*x^13 + 60*x^12 + 96*x^11 + 147*x^10 + 200*x^9 + 78*x^8 - 216*x^7 - 618*x^6 - 528*x^5 + 288*x^4 + 456*x^3 + 54*x^2 + 48*x + 68, 1)
 

Normalized defining polynomial

\( x^{18} - 6 x^{16} - 12 x^{14} - 24 x^{13} + 60 x^{12} + 96 x^{11} + 147 x^{10} + 200 x^{9} + 78 x^{8} - 216 x^{7} - 618 x^{6} - 528 x^{5} + 288 x^{4} + 456 x^{3} + 54 x^{2} + 48 x + 68 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(7851540464532429050216448=2^{51}\cdot 3^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.16$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{8} a^{11} - \frac{3}{8} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} + \frac{1}{8} a^{12} - \frac{1}{2} a^{11} + \frac{1}{8} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{220216608562766040728} a^{17} - \frac{10766618927223010459}{220216608562766040728} a^{16} + \frac{4866893912476684561}{220216608562766040728} a^{15} + \frac{2457416543554361695}{220216608562766040728} a^{14} + \frac{4234890076388036401}{220216608562766040728} a^{13} - \frac{52573360839783993007}{220216608562766040728} a^{12} - \frac{3983548321429303867}{9574635154902871336} a^{11} - \frac{13278727663370990227}{220216608562766040728} a^{10} + \frac{28551778824402876193}{110108304281383020364} a^{9} - \frac{34533147963539461129}{110108304281383020364} a^{8} - \frac{4819394319083828905}{55054152140691510182} a^{7} - \frac{26522929942512840675}{55054152140691510182} a^{6} + \frac{54729731247711219817}{110108304281383020364} a^{5} - \frac{21128443294230097119}{110108304281383020364} a^{4} + \frac{23964993745303914311}{110108304281383020364} a^{3} + \frac{2254502663368059135}{4787317577451435668} a^{2} - \frac{25072217870940703595}{55054152140691510182} a + \frac{26318427698242006723}{55054152140691510182}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1297121.60548 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$PSU(3,2)$ (as 18T35):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 6 conjugacy class representatives for $PSU(3,2)$
Character table for $PSU(3,2)$

Intermediate fields

\(\Q(\sqrt{2}) \), 9.1.990677827584.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 9 sibling: data not computed
Degree 12 sibling: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.8.24.12$x^{8} + 14 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 30$$8$$1$$24$$Q_8$$[2, 3, 4]$
2.8.24.12$x^{8} + 14 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 30$$8$$1$$24$$Q_8$$[2, 3, 4]$
3Data not computed