Normalized defining polynomial
\( x^{18} - 12 x^{15} - 27 x^{14} - 72 x^{13} - 186 x^{12} - 108 x^{11} + 45 x^{10} + 336 x^{9} + 972 x^{8} + 2052 x^{7} + 3231 x^{6} + 2592 x^{5} + 1782 x^{4} - 252 x^{3} - 810 x^{2} - 216 x + 144 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7735818598867901659628961792=2^{34}\cdot 3^{37}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{18} a^{9} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{36} a^{10} - \frac{1}{36} a^{9} - \frac{1}{6} a^{7} + \frac{5}{12} a^{6} + \frac{1}{4} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{36} a^{11} - \frac{1}{36} a^{9} - \frac{1}{6} a^{8} + \frac{1}{4} a^{7} - \frac{1}{3} a^{6} - \frac{1}{12} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{72} a^{12} - \frac{1}{72} a^{10} - \frac{1}{36} a^{9} + \frac{1}{8} a^{8} + \frac{1}{3} a^{7} + \frac{1}{8} a^{6} + \frac{1}{4} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{4} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{72} a^{13} - \frac{1}{72} a^{11} - \frac{1}{72} a^{9} - \frac{1}{6} a^{8} - \frac{1}{24} a^{7} + \frac{1}{3} a^{6} + \frac{5}{12} a^{5} - \frac{1}{6} a^{4} - \frac{1}{12} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{72} a^{14} + \frac{1}{12} a^{8} - \frac{1}{2} a^{7} - \frac{3}{8} a^{6} + \frac{1}{3} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{72} a^{15} - \frac{1}{36} a^{9} - \frac{3}{8} a^{7} - \frac{1}{4} a^{5} + \frac{1}{12} a^{3} + \frac{1}{3}$, $\frac{1}{22464} a^{16} - \frac{5}{1248} a^{15} - \frac{1}{2496} a^{14} - \frac{1}{234} a^{13} - \frac{25}{3744} a^{12} + \frac{1}{624} a^{11} - \frac{11}{1872} a^{10} - \frac{25}{936} a^{9} + \frac{553}{2496} a^{8} - \frac{1475}{3744} a^{7} - \frac{71}{832} a^{6} + \frac{9}{52} a^{5} - \frac{7}{312} a^{4} + \frac{37}{156} a^{3} - \frac{139}{416} a^{2} + \frac{137}{312} a + \frac{17}{156}$, $\frac{1}{41952502934784} a^{17} - \frac{7976273}{1553796404992} a^{16} + \frac{49001407051}{13984167644928} a^{15} - \frac{17268568559}{4661389214976} a^{14} - \frac{195407467}{118509895296} a^{13} - \frac{474623633}{776898202496} a^{12} + \frac{2453790271}{1748020955616} a^{11} + \frac{21365903053}{3496041911232} a^{10} - \frac{112187042093}{13984167644928} a^{9} - \frac{2050568129665}{13984167644928} a^{8} + \frac{1995167764301}{4661389214976} a^{7} - \frac{534054794217}{1553796404992} a^{6} + \frac{1689441439}{9875824608} a^{5} - \frac{73490258801}{194224550624} a^{4} - \frac{294887807129}{2330694607488} a^{3} + \frac{178411819095}{776898202496} a^{2} - \frac{30692998403}{582673651872} a - \frac{109325204341}{291336825936}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 178921364.387 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times D_9$ (as 18T50):
| A solvable group of order 108 |
| The 18 conjugacy class representatives for $S_3\times D_9$ |
| Character table for $S_3\times D_9$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), 3.1.216.1, 6.2.2239488.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | $18$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 3 | Data not computed | ||||||