Normalized defining polynomial
\( x^{18} - x^{17} + 6 x^{16} + 74 x^{15} - 324 x^{14} + 1711 x^{13} - 5870 x^{12} + 19528 x^{11} - 48163 x^{10} + 113360 x^{9} - 225634 x^{8} + 385625 x^{7} - 551651 x^{6} + 647554 x^{5} - 689064 x^{4} + 582461 x^{3} - 427833 x^{2} + 196056 x - 79183 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(74140900471891896178682056546601=7^{13}\cdot 83^{5}\cdot 181^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 83, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{181} a^{16} + \frac{76}{181} a^{15} + \frac{77}{181} a^{14} - \frac{39}{181} a^{13} + \frac{54}{181} a^{12} + \frac{10}{181} a^{11} + \frac{19}{181} a^{10} - \frac{76}{181} a^{9} - \frac{49}{181} a^{8} - \frac{30}{181} a^{7} - \frac{61}{181} a^{6} - \frac{45}{181} a^{5} + \frac{64}{181} a^{4} + \frac{25}{181} a^{3} - \frac{83}{181} a^{2} + \frac{41}{181} a - \frac{58}{181}$, $\frac{1}{28734650518972349935817253364898902061815052723} a^{17} - \frac{47502142924587408185267028373740347236780148}{28734650518972349935817253364898902061815052723} a^{16} - \frac{5655876620748425504344571897908640044169670820}{28734650518972349935817253364898902061815052723} a^{15} - \frac{7310259609604230463838019021320898059832290289}{28734650518972349935817253364898902061815052723} a^{14} + \frac{10788247594917307327811159913056051121572588268}{28734650518972349935817253364898902061815052723} a^{13} - \frac{189726308300408679465580104518986324107892889}{28734650518972349935817253364898902061815052723} a^{12} - \frac{9691289256044378037334280110109574613784787346}{28734650518972349935817253364898902061815052723} a^{11} - \frac{9550496094881088801297458420012980946050462098}{28734650518972349935817253364898902061815052723} a^{10} + \frac{11160429904512446461467665495219579285779967045}{28734650518972349935817253364898902061815052723} a^{9} + \frac{2124314854235856826895713228214388400319750435}{28734650518972349935817253364898902061815052723} a^{8} - \frac{3785292810268986048033824132729831769335146914}{28734650518972349935817253364898902061815052723} a^{7} - \frac{4042872212881680668901575568998000606415018861}{28734650518972349935817253364898902061815052723} a^{6} + \frac{6364640644283171626903470799513505512009492486}{28734650518972349935817253364898902061815052723} a^{5} + \frac{4103296085486180715606325895732939281480703696}{28734650518972349935817253364898902061815052723} a^{4} - \frac{13467590532696119478292619623354169069000798737}{28734650518972349935817253364898902061815052723} a^{3} - \frac{2526627191541990711966093647469289739286307114}{28734650518972349935817253364898902061815052723} a^{2} - \frac{4735444776221950956996336476355191951243840251}{28734650518972349935817253364898902061815052723} a - \frac{13412538909903553129508170754388391000093058925}{28734650518972349935817253364898902061815052723}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59862015.9899 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 192 conjugacy class representatives for t18n839 are not computed |
| Character table for t18n839 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.26552265046321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 83 | Data not computed | ||||||
| 181 | Data not computed | ||||||