Normalized defining polynomial
\( x^{18} - 6 x^{15} + 576 x^{12} + 3626 x^{9} - 52350 x^{6} + 140832 x^{3} - 159014 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(728637186579565510656000000000=2^{26}\cdot 3^{33}\cdot 5^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{2} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{9} + \frac{1}{9} a^{3} + \frac{1}{9}$, $\frac{1}{387} a^{13} + \frac{55}{387} a^{10} + \frac{2}{43} a^{7} + \frac{37}{387} a^{4} - \frac{170}{387} a$, $\frac{1}{387} a^{14} + \frac{4}{129} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{2}{43} a^{8} + \frac{37}{387} a^{5} + \frac{58}{129} a^{2} + \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{1941653199897} a^{15} + \frac{90569025857}{1941653199897} a^{12} - \frac{253527586709}{1941653199897} a^{9} + \frac{102453702142}{1941653199897} a^{6} + \frac{19138326740}{1941653199897} a^{3} - \frac{3658060016}{45154725579}$, $\frac{1}{5824959599691} a^{16} + \frac{1}{5824959599691} a^{15} + \frac{259574699}{5824959599691} a^{13} + \frac{90569025857}{5824959599691} a^{12} + \frac{604412199292}{5824959599691} a^{10} - \frac{253527586709}{5824959599691} a^{9} - \frac{875898685403}{5824959599691} a^{7} + \frac{749671435441}{5824959599691} a^{6} + \frac{1855430500286}{5824959599691} a^{4} - \frac{628079406559}{5824959599691} a^{3} + \frac{309302250295}{5824959599691} a + \frac{56548240756}{135464176737}$, $\frac{1}{250473262786713} a^{17} - \frac{1}{5824959599691} a^{15} + \frac{150775326629}{250473262786713} a^{14} - \frac{90569025857}{5824959599691} a^{12} - \frac{11180971176827}{250473262786713} a^{11} + \frac{1}{9} a^{10} - \frac{393690146590}{5824959599691} a^{9} + \frac{38724795647380}{250473262786713} a^{8} - \frac{749671435441}{5824959599691} a^{6} + \frac{75382375318091}{250473262786713} a^{5} + \frac{628079406559}{5824959599691} a^{3} + \frac{55623841084570}{250473262786713} a^{2} + \frac{1}{9} a + \frac{63864360788}{135464176737}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 69225041.92046793 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_9:C_3$ (as 18T45):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times D_9:C_3$ |
| Character table for $C_2\times D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{15}) \), 3.1.108.1, 6.2.69984000.1, 9.1.11019960576.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |