Normalized defining polynomial
\( x^{18} - 2 x^{17} + 5 x^{16} + 51 x^{15} - 77 x^{14} + 184 x^{13} + 941 x^{12} - 1132 x^{11} + 2107 x^{10} + 7814 x^{9} - 11792 x^{8} + 12640 x^{7} + 20495 x^{6} - 42017 x^{5} + 15973 x^{4} + 35257 x^{3} - 20598 x^{2} + 1325 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(70135166142929108353921845725917=23^{6}\cdot 53\cdot 3541^{3}\cdot 5861^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 53, 3541, 5861$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{95} a^{16} + \frac{34}{95} a^{15} + \frac{4}{95} a^{14} - \frac{7}{19} a^{13} + \frac{33}{95} a^{12} - \frac{23}{95} a^{11} - \frac{32}{95} a^{10} - \frac{44}{95} a^{9} + \frac{13}{95} a^{8} - \frac{43}{95} a^{7} - \frac{1}{19} a^{6} - \frac{7}{19} a^{5} - \frac{1}{19} a^{4} + \frac{13}{95} a^{3} - \frac{44}{95} a^{2} - \frac{17}{95} a + \frac{2}{19}$, $\frac{1}{202974622871110937904685367951744335} a^{17} + \frac{134751677671846183710241454804920}{40594924574222187580937073590348867} a^{16} + \frac{43893945346691784698562622174486323}{202974622871110937904685367951744335} a^{15} + \frac{7483866737563207449701131302539619}{18452238442828267082244124359249485} a^{14} + \frac{6138511903589326486988542525524783}{18452238442828267082244124359249485} a^{13} + \frac{13750100238470665683419665973190589}{40594924574222187580937073590348867} a^{12} - \frac{3009882933810845721740233845300903}{40594924574222187580937073590348867} a^{11} + \frac{67716313597288281304012657554910284}{202974622871110937904685367951744335} a^{10} - \frac{76614855669784175974175560342018501}{202974622871110937904685367951744335} a^{9} - \frac{7199250208551486686396666263298978}{40594924574222187580937073590348867} a^{8} + \frac{88353945988905549334385475102701227}{202974622871110937904685367951744335} a^{7} - \frac{14669282342504940612105279569292708}{40594924574222187580937073590348867} a^{6} - \frac{17619634550925121568662982512407960}{40594924574222187580937073590348867} a^{5} + \frac{5218060702828823647760777457530687}{10682874887953207258141335155354965} a^{4} - \frac{71461876682876631171940260566249346}{202974622871110937904685367951744335} a^{3} + \frac{39197525588640017680469837320167209}{202974622871110937904685367951744335} a^{2} - \frac{1651483138751883173877730256409668}{10682874887953207258141335155354965} a + \frac{4428298646703681852452397248021204}{40594924574222187580937073590348867}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1680972655.65 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2239488 |
| The 255 conjugacy class representatives for t18n945 are not computed |
| Character table for t18n945 is not computed |
Intermediate fields
| 3.1.23.1, 6.2.10978760729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $18$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $53$ | $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.12.0.1 | $x^{12} - x + 12$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 3541 | Data not computed | ||||||
| 5861 | Data not computed | ||||||