Normalized defining polynomial
\( x^{18} - 7 x^{17} + 17 x^{16} - 3 x^{15} - 51 x^{14} + 44 x^{13} + 219 x^{12} - 2249 x^{11} + 4504 x^{10} + 3348 x^{9} - 18636 x^{8} + 28161 x^{7} + 36603 x^{6} - 144289 x^{5} + 24874 x^{4} + 92771 x^{3} - 138990 x^{2} + 172369 x - 78971 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68187784456396954697778125000000=2^{6}\cdot 5^{11}\cdot 139^{4}\cdot 197^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 139, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{13} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{145} a^{16} + \frac{8}{145} a^{15} + \frac{1}{145} a^{14} - \frac{61}{145} a^{13} - \frac{2}{5} a^{12} + \frac{46}{145} a^{11} - \frac{48}{145} a^{10} + \frac{26}{145} a^{9} - \frac{4}{145} a^{8} - \frac{9}{29} a^{7} + \frac{54}{145} a^{6} + \frac{1}{145} a^{5} + \frac{13}{145} a^{4} - \frac{71}{145} a^{3} + \frac{1}{145} a^{2} - \frac{44}{145} a - \frac{7}{29}$, $\frac{1}{170448781148655993088289427943259277021291485} a^{17} - \frac{534038988103295370711051493486578383943652}{170448781148655993088289427943259277021291485} a^{16} - \frac{5489382142474357329427153597737353755519312}{170448781148655993088289427943259277021291485} a^{15} + \frac{180517185607601705141451780568511736334202}{170448781148655993088289427943259277021291485} a^{14} - \frac{12274695679575199170370363143694975168971268}{170448781148655993088289427943259277021291485} a^{13} - \frac{10146111341340051114124950372663762824811991}{170448781148655993088289427943259277021291485} a^{12} + \frac{48819841213696101707596228644424981030815444}{170448781148655993088289427943259277021291485} a^{11} - \frac{5483291940413915938821095972203368180467979}{34089756229731198617657885588651855404258297} a^{10} - \frac{44105942471139020767221773476708529231079866}{170448781148655993088289427943259277021291485} a^{9} - \frac{6989332221014660003703686971776389808723610}{34089756229731198617657885588651855404258297} a^{8} + \frac{12329779022857929189287163173614921021106}{202673937156546959676919652726824348420085} a^{7} + \frac{6198343574913040068081198748263788011811788}{170448781148655993088289427943259277021291485} a^{6} + \frac{7686292659648274818300556265643729422737378}{170448781148655993088289427943259277021291485} a^{5} + \frac{7113414407174772550693032606616836140124371}{170448781148655993088289427943259277021291485} a^{4} + \frac{8544376773453224058649514935714318467672284}{170448781148655993088289427943259277021291485} a^{3} - \frac{20777826495122025087992815401738863881270448}{170448781148655993088289427943259277021291485} a^{2} - \frac{83257578580431090727504069903489353601799247}{170448781148655993088289427943259277021291485} a + \frac{12435117534119190738736334646710911929008207}{34089756229731198617657885588651855404258297}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 101821357.206 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 84 conjugacy class representatives for t18n775 are not computed |
| Character table for t18n775 is not computed |
Intermediate fields
| 3.3.985.1, 9.9.92322657333125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.12.0.1 | $x^{12} - 26 x^{10} + 275 x^{8} - 1500 x^{6} + 4375 x^{4} - 6250 x^{2} + 7221$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $139$ | 139.6.4.1 | $x^{6} + 695 x^{3} + 154568$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 139.12.0.1 | $x^{12} - x + 22$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $197$ | $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 197.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 197.8.4.1 | $x^{8} + 1397124 x^{4} - 7645373 x^{2} + 487988867844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |