Normalized defining polynomial
\( x^{18} - 3 x^{17} + 36 x^{16} - 64 x^{15} + 450 x^{14} - 498 x^{13} + 2684 x^{12} - 2196 x^{11} + 10113 x^{10} - 147 x^{9} + 23448 x^{8} + 16620 x^{7} + 34660 x^{6} + 74256 x^{5} + 44448 x^{4} + 162592 x^{3} + 87360 x^{2} + 14208 x + 23680 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6662249794333205840694997942272=2^{26}\cdot 3^{24}\cdot 37^{6}\cdot 137\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} + \frac{1}{8} a^{5}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{8} a^{9} - \frac{1}{16} a^{8} + \frac{1}{16} a^{6} - \frac{1}{8} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{11} + \frac{1}{16} a^{9} + \frac{1}{16} a^{7} + \frac{1}{8} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{32} a^{11} + \frac{1}{32} a^{10} + \frac{1}{32} a^{9} + \frac{1}{32} a^{8} - \frac{3}{32} a^{7} + \frac{1}{16} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{64} a^{15} - \frac{1}{64} a^{14} + \frac{1}{64} a^{13} - \frac{1}{64} a^{12} + \frac{3}{64} a^{11} + \frac{1}{64} a^{10} - \frac{1}{64} a^{9} - \frac{3}{64} a^{8} - \frac{1}{8} a^{7} + \frac{1}{16} a^{6} - \frac{3}{16} a^{5} - \frac{1}{4} a^{4}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} + \frac{1}{16} a^{9} - \frac{7}{64} a^{8} + \frac{1}{16} a^{7} - \frac{1}{16} a^{6} + \frac{3}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{40741700327487013560207377266260224} a^{17} - \frac{40599993287914826756229131314991}{10185425081871753390051844316565056} a^{16} + \frac{2073249403961987890670322489279}{636589067616984586878240269785316} a^{15} + \frac{71575375615182121723076691906373}{5092712540935876695025922158282528} a^{14} - \frac{461041428619738192629855489068619}{20370850163743506780103688633130112} a^{13} - \frac{186208235642613761239391364915527}{10185425081871753390051844316565056} a^{12} + \frac{121454896835798209093693809772565}{5092712540935876695025922158282528} a^{11} - \frac{394200904198121883981877898570975}{10185425081871753390051844316565056} a^{10} - \frac{2019973430172895509843555296144563}{40741700327487013560207377266260224} a^{9} + \frac{296573222811409768872176871349339}{5092712540935876695025922158282528} a^{8} - \frac{177462919762519426366125145730077}{2546356270467938347512961079141264} a^{7} - \frac{133422317754358503291079586976875}{10185425081871753390051844316565056} a^{6} - \frac{454978258507770636319850845206189}{2546356270467938347512961079141264} a^{5} - \frac{29373366864187225994531501455289}{1273178135233969173756480539570632} a^{4} + \frac{3610546016894955736139160034817}{1273178135233969173756480539570632} a^{3} - \frac{18117284637706680435202192273867}{636589067616984586878240269785316} a^{2} + \frac{64414812255948077707741338400750}{159147266904246146719560067446329} a - \frac{81970153588389235814204293511393}{318294533808492293439120134892658}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3853517881.66 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 55296 |
| The 120 conjugacy class representatives for t18n734 are not computed |
| Character table for t18n734 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.220521111330816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 137 | Data not computed | ||||||