Normalized defining polynomial
\( x^{18} - 9 x^{17} + 21 x^{16} - 108 x^{14} - 1944 x^{13} - 2232 x^{12} + 17208 x^{11} - 69381 x^{10} - 196803 x^{9} - 476595 x^{8} + 423450 x^{7} - 1083750 x^{6} - 2328750 x^{5} - 3262500 x^{4} + 5062500 x^{3} - 4921875 x^{2} - 10546875 x - 5859375 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(656193403924348462564108543524864=2^{16}\cdot 3^{33}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{25} a^{11} + \frac{1}{25} a^{10} + \frac{6}{25} a^{9} + \frac{2}{5} a^{8} - \frac{8}{25} a^{7} + \frac{1}{25} a^{6} + \frac{3}{25} a^{5} - \frac{12}{25} a^{4} - \frac{1}{25} a^{3} + \frac{12}{25} a^{2}$, $\frac{1}{125} a^{12} + \frac{1}{125} a^{11} + \frac{6}{125} a^{10} + \frac{7}{25} a^{9} - \frac{33}{125} a^{8} - \frac{24}{125} a^{7} - \frac{22}{125} a^{6} - \frac{37}{125} a^{5} + \frac{49}{125} a^{4} - \frac{13}{125} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{625} a^{13} + \frac{1}{625} a^{12} + \frac{6}{625} a^{11} + \frac{7}{125} a^{10} + \frac{92}{625} a^{9} - \frac{24}{625} a^{8} + \frac{228}{625} a^{7} + \frac{88}{625} a^{6} + \frac{174}{625} a^{5} + \frac{237}{625} a^{4} + \frac{7}{25} a^{3} - \frac{4}{25} a^{2} + \frac{2}{5} a$, $\frac{1}{3125} a^{14} + \frac{1}{3125} a^{13} + \frac{6}{3125} a^{12} + \frac{7}{625} a^{11} + \frac{92}{3125} a^{10} + \frac{1226}{3125} a^{9} + \frac{1478}{3125} a^{8} + \frac{1338}{3125} a^{7} + \frac{799}{3125} a^{6} - \frac{388}{3125} a^{5} - \frac{18}{125} a^{4} + \frac{21}{125} a^{3} + \frac{12}{25} a^{2} + \frac{2}{5} a$, $\frac{1}{15625} a^{15} + \frac{1}{15625} a^{14} + \frac{6}{15625} a^{13} + \frac{7}{3125} a^{12} + \frac{92}{15625} a^{11} + \frac{1226}{15625} a^{10} - \frac{4772}{15625} a^{9} + \frac{4463}{15625} a^{8} + \frac{799}{15625} a^{7} + \frac{2737}{15625} a^{6} + \frac{107}{625} a^{5} + \frac{21}{625} a^{4} + \frac{37}{125} a^{3} - \frac{3}{25} a^{2}$, $\frac{1}{5546875} a^{16} + \frac{81}{5546875} a^{15} - \frac{489}{5546875} a^{14} - \frac{262}{1109375} a^{13} + \frac{21942}{5546875} a^{12} - \frac{92164}{5546875} a^{11} + \frac{229783}{5546875} a^{10} + \frac{662128}{5546875} a^{9} - \frac{198886}{5546875} a^{8} + \frac{2639182}{5546875} a^{7} + \frac{219067}{1109375} a^{6} + \frac{14406}{44375} a^{5} + \frac{3933}{44375} a^{4} - \frac{183}{8875} a^{3} - \frac{81}{1775} a^{2} + \frac{156}{355} a - \frac{28}{71}$, $\frac{1}{1958996717612895185875074970771435166172496484375} a^{17} - \frac{135319506809027065621126971210348407898964}{1958996717612895185875074970771435166172496484375} a^{16} - \frac{635051427892854323818921753170158628408229}{27591503064970354730634858743259650227781640625} a^{15} - \frac{21856401715550890127286310872666594919605286}{391799343522579037175014994154287033234499296875} a^{14} - \frac{1317128237786856363640974432160557163530070358}{1958996717612895185875074970771435166172496484375} a^{13} - \frac{842370142491996175896244583520662281516945804}{1958996717612895185875074970771435166172496484375} a^{12} - \frac{4170089147970403152068853020238021700974726587}{1958996717612895185875074970771435166172496484375} a^{11} - \frac{113426549081886097986392261981891271122794658357}{1958996717612895185875074970771435166172496484375} a^{10} - \frac{194333698039816303800064088225073840614064120771}{1958996717612895185875074970771435166172496484375} a^{9} - \frac{229063100548554754713288474005072158047594116323}{1958996717612895185875074970771435166172496484375} a^{8} + \frac{139036674856652345720136954486727826326215272604}{391799343522579037175014994154287033234499296875} a^{7} - \frac{7771701824760400799485393432359675888479450183}{78359868704515807435002998830857406646899859375} a^{6} + \frac{6218020478681279980916754351084846896993179196}{15671973740903161487000599766171481329379971875} a^{5} - \frac{522756534898750865959178996257590883314947993}{3134394748180632297400119953234296265875994375} a^{4} + \frac{107642665440848634908482593414841026966762899}{626878949636126459480023990646859253175198875} a^{3} - \frac{18870388388365666468225120538062512947884767}{125375789927225291896004798129371850635039775} a^{2} - \frac{1068028963695000040427292606128367605277220}{5015031597089011675840191925174874025401591} a + \frac{2133671292130538052081978149870616522689099}{5015031597089011675840191925174874025401591}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1338628985.0976017 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_9:C_3$ (as 18T45):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times D_9:C_3$ |
| Character table for $C_2\times D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{69}) \), 3.1.108.1, 6.2.425747664.3, 9.1.11019960576.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |