Normalized defining polynomial
\( x^{18} - 6 x^{17} + 21 x^{16} - 64 x^{15} + 165 x^{14} - 308 x^{13} + 424 x^{12} - 466 x^{11} + 244 x^{10} + 400 x^{9} - 751 x^{8} + 1514 x^{7} - 1219 x^{6} + 1196 x^{5} - 1459 x^{4} + 1336 x^{3} - 1658 x^{2} + 748 x - 269 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(651301291022122552456904704=2^{18}\cdot 101^{8}\cdot 479^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 101, 479$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{29} a^{16} + \frac{8}{29} a^{15} + \frac{3}{29} a^{13} + \frac{4}{29} a^{12} - \frac{13}{29} a^{11} - \frac{13}{29} a^{9} + \frac{4}{29} a^{8} + \frac{10}{29} a^{7} - \frac{12}{29} a^{6} - \frac{13}{29} a^{5} - \frac{8}{29} a^{4} + \frac{11}{29} a^{2} + \frac{11}{29} a - \frac{9}{29}$, $\frac{1}{23099506873003787903975033911} a^{17} + \frac{279188499113811572564571185}{23099506873003787903975033911} a^{16} - \frac{5585976647015180633066090403}{23099506873003787903975033911} a^{15} - \frac{9679255548486006401354095945}{23099506873003787903975033911} a^{14} + \frac{3472403824146920798432547920}{23099506873003787903975033911} a^{13} + \frac{8483557379073802623019384836}{23099506873003787903975033911} a^{12} - \frac{1196356221787826316964251515}{3299929553286255414853576273} a^{11} - \frac{3535258519297439681871298346}{23099506873003787903975033911} a^{10} + \frac{8543139748184715633036912223}{23099506873003787903975033911} a^{9} - \frac{3452732652142009385060955040}{23099506873003787903975033911} a^{8} + \frac{6535825280464972777409949870}{23099506873003787903975033911} a^{7} + \frac{559955340502697731450202389}{3299929553286255414853576273} a^{6} - \frac{2083258471102760064663001159}{23099506873003787903975033911} a^{5} - \frac{10183837666250645748883223669}{23099506873003787903975033911} a^{4} + \frac{709363069150134020973604062}{23099506873003787903975033911} a^{3} + \frac{10008716923806690242694720044}{23099506873003787903975033911} a^{2} + \frac{1088165210068361477588111698}{3299929553286255414853576273} a - \frac{6436681032122131489712842081}{23099506873003787903975033911}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 844249.238138 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 165 conjugacy class representatives for t18n883 are not computed |
| Character table for t18n883 is not computed |
Intermediate fields
| 3.3.404.1, 9.7.31584907456.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 101 | Data not computed | ||||||
| 479 | Data not computed | ||||||