Properties

Label 18.2.62648788224...0000.1
Degree $18$
Signature $[2, 8]$
Discriminant $2^{12}\cdot 5^{9}\cdot 23^{8}$
Root discriminant $14.30$
Ramified primes $2, 5, 23$
Class number $1$
Class group Trivial
Galois group $S_3^2$ (as 18T9)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, -6, -1, -10, 14, -8, 56, -4, 75, 4, 56, 8, 14, 10, -1, 6, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 2*x^17 + 6*x^16 - x^15 + 10*x^14 + 14*x^13 + 8*x^12 + 56*x^11 + 4*x^10 + 75*x^9 - 4*x^8 + 56*x^7 - 8*x^6 + 14*x^5 - 10*x^4 - x^3 - 6*x^2 - 2*x - 1)
 
gp: K = bnfinit(x^18 - 2*x^17 + 6*x^16 - x^15 + 10*x^14 + 14*x^13 + 8*x^12 + 56*x^11 + 4*x^10 + 75*x^9 - 4*x^8 + 56*x^7 - 8*x^6 + 14*x^5 - 10*x^4 - x^3 - 6*x^2 - 2*x - 1, 1)
 

Normalized defining polynomial

\( x^{18} - 2 x^{17} + 6 x^{16} - x^{15} + 10 x^{14} + 14 x^{13} + 8 x^{12} + 56 x^{11} + 4 x^{10} + 75 x^{9} - 4 x^{8} + 56 x^{7} - 8 x^{6} + 14 x^{5} - 10 x^{4} - x^{3} - 6 x^{2} - 2 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(626487882248000000000=2^{12}\cdot 5^{9}\cdot 23^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $14.30$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{8} - \frac{2}{5} a^{5} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5225} a^{16} - \frac{151}{5225} a^{15} - \frac{44}{475} a^{14} - \frac{141}{5225} a^{13} - \frac{73}{1045} a^{12} - \frac{2172}{5225} a^{11} - \frac{1724}{5225} a^{10} + \frac{34}{95} a^{9} - \frac{267}{1045} a^{8} + \frac{42}{95} a^{7} + \frac{1411}{5225} a^{6} + \frac{82}{5225} a^{5} - \frac{491}{1045} a^{4} - \frac{904}{5225} a^{3} - \frac{139}{475} a^{2} - \frac{1939}{5225} a + \frac{1}{5225}$, $\frac{1}{5225} a^{17} - \frac{59}{1045} a^{15} - \frac{3}{209} a^{14} + \frac{289}{5225} a^{13} + \frac{188}{5225} a^{12} - \frac{2611}{5225} a^{11} - \frac{1384}{5225} a^{10} + \frac{404}{1045} a^{9} + \frac{64}{1045} a^{8} - \frac{899}{5225} a^{7} - \frac{37}{5225} a^{6} - \frac{1568}{5225} a^{5} - \frac{1679}{5225} a^{4} - \frac{93}{5225} a^{3} + \frac{1262}{5225} a^{2} + \frac{1902}{5225} a - \frac{894}{5225}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1309.03443035 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3^2$ (as 18T9):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 9 conjugacy class representatives for $S_3^2$
Character table for $S_3^2$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.1.460.1, 3.1.23.1, 6.2.1058000.2 x2, 6.2.1058000.3, 6.2.66125.1, 9.1.2238728000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 sibling: 6.2.1058000.2
Degree 9 sibling: 9.1.2238728000.1
Degree 12 sibling: 12.0.592143556000000.1
Degree 18 siblings: Deg 18, Deg 18

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$