Normalized defining polynomial
\( x^{18} - 3 x^{17} + 22 x^{16} - 31 x^{15} + 128 x^{14} + 18 x^{13} + 208 x^{12} + 1052 x^{11} - 219 x^{10} + 3908 x^{9} - 1567 x^{8} + 7050 x^{7} - 4949 x^{6} + 9227 x^{5} - 5021 x^{4} + 4131 x^{3} - 1581 x^{2} + 856 x - 631 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60006020121228767347575793=7^{12}\cdot 41^{6}\cdot 97^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{83} a^{16} - \frac{17}{83} a^{15} - \frac{22}{83} a^{14} + \frac{8}{83} a^{13} - \frac{5}{83} a^{12} - \frac{10}{83} a^{11} + \frac{15}{83} a^{10} + \frac{10}{83} a^{9} - \frac{24}{83} a^{8} + \frac{13}{83} a^{7} + \frac{39}{83} a^{6} + \frac{16}{83} a^{5} + \frac{14}{83} a^{4} + \frac{37}{83} a^{3} - \frac{25}{83} a^{2} + \frac{23}{83} a + \frac{1}{83}$, $\frac{1}{2034844795102833367577848674724673} a^{17} - \frac{7494140874578527519855593779836}{2034844795102833367577848674724673} a^{16} + \frac{491741244068159261210134893850475}{2034844795102833367577848674724673} a^{15} - \frac{326067457708121924614678456383331}{2034844795102833367577848674724673} a^{14} - \frac{689980072847281963434261054840933}{2034844795102833367577848674724673} a^{13} - \frac{849294523989936503165831079514529}{2034844795102833367577848674724673} a^{12} - \frac{969058451084997015404446473471309}{2034844795102833367577848674724673} a^{11} + \frac{134719703989585896668070169543470}{2034844795102833367577848674724673} a^{10} - \frac{766375832648433253779906669708887}{2034844795102833367577848674724673} a^{9} + \frac{955995402274051148548124701035493}{2034844795102833367577848674724673} a^{8} - \frac{624209175195689313224559909014751}{2034844795102833367577848674724673} a^{7} - \frac{738594430219542508977374174390997}{2034844795102833367577848674724673} a^{6} - \frac{80416548011200579148976057427937}{2034844795102833367577848674724673} a^{5} + \frac{148247375506211041886460619541473}{2034844795102833367577848674724673} a^{4} + \frac{347525894749580217337745450522664}{2034844795102833367577848674724673} a^{3} + \frac{781999037397122795278246304066643}{2034844795102833367577848674724673} a^{2} + \frac{316335278166359140333418729231144}{2034844795102833367577848674724673} a - \frac{964421890582111667148881846390342}{2034844795102833367577848674724673}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 151821.786372 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 110 conjugacy class representatives for t18n765 are not computed |
| Character table for t18n765 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.5.467890073.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 41 | Data not computed | ||||||
| $97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.3.3 | $x^{4} + 485$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |