Normalized defining polynomial
\( x^{18} - 2 x^{17} + 17 x^{16} - 36 x^{15} + 137 x^{14} - 186 x^{13} + 520 x^{12} - 152 x^{11} + 856 x^{10} + 1448 x^{9} + 731 x^{8} + 4914 x^{7} + 2609 x^{6} + 6010 x^{5} + 7771 x^{4} + 4498 x^{3} + 6252 x^{2} + 6198 x + 691 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(59372704543971800284135424=2^{18}\cdot 37^{8}\cdot 401^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{37} a^{16} - \frac{15}{37} a^{15} - \frac{6}{37} a^{14} - \frac{18}{37} a^{13} + \frac{14}{37} a^{12} + \frac{4}{37} a^{11} + \frac{6}{37} a^{10} + \frac{8}{37} a^{9} - \frac{1}{37} a^{8} + \frac{13}{37} a^{7} + \frac{3}{37} a^{6} + \frac{6}{37} a^{5} - \frac{10}{37} a^{4} - \frac{15}{37} a^{3} + \frac{8}{37} a^{2} + \frac{5}{37} a + \frac{3}{37}$, $\frac{1}{87680759077601354770303809535649} a^{17} + \frac{316639404450158363910146717671}{87680759077601354770303809535649} a^{16} + \frac{27598756184951379582135574439568}{87680759077601354770303809535649} a^{15} - \frac{30981966957062321066128009973209}{87680759077601354770303809535649} a^{14} - \frac{31211733990929146515718269059853}{87680759077601354770303809535649} a^{13} + \frac{10811637104117689468038526140647}{87680759077601354770303809535649} a^{12} + \frac{26258454811796628217033327002884}{87680759077601354770303809535649} a^{11} - \frac{10777560811680420668887070430059}{87680759077601354770303809535649} a^{10} - \frac{537383219530348410769320387558}{87680759077601354770303809535649} a^{9} + \frac{20692443817520374045058825708823}{87680759077601354770303809535649} a^{8} + \frac{18281543868702494323534596554367}{87680759077601354770303809535649} a^{7} + \frac{1624589568591486915380141790852}{87680759077601354770303809535649} a^{6} - \frac{34928792717502321456591770139103}{87680759077601354770303809535649} a^{5} + \frac{39949793310313372159748687113596}{87680759077601354770303809535649} a^{4} + \frac{10337689801966696973140779735487}{87680759077601354770303809535649} a^{3} + \frac{31949963552523243258213893395922}{87680759077601354770303809535649} a^{2} - \frac{5170694846351169850475956829714}{87680759077601354770303809535649} a + \frac{14872595001017474606992499024394}{87680759077601354770303809535649}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 174428.179842 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 165 conjugacy class representatives for t18n885 are not computed |
| Character table for t18n885 is not computed |
Intermediate fields
| 3.3.148.1, 9.5.1299958592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 401 | Data not computed | ||||||