Normalized defining polynomial
\( x^{18} - 9 x^{16} - 84 x^{15} + 72 x^{14} + 828 x^{13} + 648 x^{12} - 1548 x^{11} - 8766 x^{10} - 19708 x^{9} + 32670 x^{8} + 78804 x^{7} + 80160 x^{6} - 141084 x^{5} - 452880 x^{4} + 177516 x^{3} + 64629 x^{2} + 480636 x - 721709 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(587152195005575401214701453922304=2^{12}\cdot 3^{37}\cdot 7^{12}\cdot 23\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{24} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a + \frac{1}{24}$, $\frac{1}{24} a^{10} - \frac{1}{8} a^{8} - \frac{3}{8} a^{2} - \frac{1}{3} a + \frac{1}{8}$, $\frac{1}{24} a^{11} - \frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{6} a^{2} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{48} a^{12} - \frac{1}{16} a^{8} + \frac{1}{16} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{3}{16}$, $\frac{1}{48} a^{13} - \frac{1}{48} a^{9} - \frac{1}{8} a^{8} - \frac{3}{16} a^{5} + \frac{1}{12} a^{4} + \frac{3}{16} a + \frac{1}{24}$, $\frac{1}{144} a^{14} - \frac{1}{144} a^{13} + \frac{1}{144} a^{12} - \frac{1}{72} a^{11} - \frac{1}{144} a^{10} + \frac{1}{144} a^{9} + \frac{1}{48} a^{8} - \frac{1}{12} a^{7} + \frac{1}{48} a^{6} + \frac{1}{144} a^{5} + \frac{35}{144} a^{4} - \frac{13}{72} a^{3} - \frac{59}{144} a^{2} - \frac{25}{144} a - \frac{47}{144}$, $\frac{1}{288} a^{15} - \frac{1}{288} a^{14} + \frac{1}{288} a^{13} + \frac{1}{288} a^{12} + \frac{5}{288} a^{11} - \frac{5}{288} a^{10} - \frac{1}{96} a^{9} - \frac{1}{96} a^{8} + \frac{1}{96} a^{7} - \frac{35}{288} a^{6} + \frac{35}{288} a^{5} + \frac{19}{288} a^{4} + \frac{7}{288} a^{3} + \frac{89}{288} a^{2} - \frac{17}{288} a - \frac{11}{96}$, $\frac{1}{4032} a^{16} - \frac{1}{2016} a^{15} - \frac{1}{672} a^{14} + \frac{1}{288} a^{13} - \frac{17}{2016} a^{12} - \frac{1}{96} a^{11} + \frac{5}{2016} a^{10} + \frac{5}{288} a^{9} - \frac{3}{28} a^{8} + \frac{35}{288} a^{7} - \frac{193}{2016} a^{6} - \frac{7}{96} a^{5} + \frac{289}{2016} a^{4} + \frac{7}{288} a^{3} + \frac{5}{672} a^{2} - \frac{151}{2016} a + \frac{271}{4032}$, $\frac{1}{24920001799745458844167740231435648} a^{17} + \frac{990770342822231827517156084767}{8306667266581819614722580077145216} a^{16} - \frac{1345204530796308207279286525943}{778750056242045588880241882232364} a^{15} + \frac{2098779414168654161139969490187}{6230000449936364711041935057858912} a^{14} - \frac{11946085571250265268211475752911}{2076666816645454903680645019286304} a^{13} + \frac{1636515248748994512214562947327}{1557500112484091177760483764464728} a^{12} - \frac{51973650084152069679554726487571}{3115000224968182355520967528929456} a^{11} + \frac{10844563682240440612611873774503}{692222272215151634560215006428768} a^{10} + \frac{84276701846624536394827131312451}{12460000899872729422083870115717824} a^{9} + \frac{581175088552804655280803620321253}{12460000899872729422083870115717824} a^{8} + \frac{18642413725166082495500425872755}{259583352080681862960080627410788} a^{7} - \frac{537822694692289972269027886117867}{6230000449936364711041935057858912} a^{6} + \frac{760675358565121614233936812534439}{6230000449936364711041935057858912} a^{5} + \frac{62784497414243232684979631638145}{1038333408322727451840322509643152} a^{4} + \frac{51938433676657824460781429630603}{3115000224968182355520967528929456} a^{3} + \frac{191030869404508244598741479822137}{6230000449936364711041935057858912} a^{2} + \frac{1423710808966693586872937995593}{2768889088860606538240860025715072} a - \frac{7770030455841098263723912379101711}{24920001799745458844167740231435648}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4159681971.98 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n658 are not computed |
| Character table for t18n658 is not computed |
Intermediate fields
| 3.3.756.1, 9.9.2917096519063104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.12.0.1 | $x^{12} + x^{2} - 3 x + 7$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |