Properties

Label 18.2.587...304.1
Degree $18$
Signature $[2, 8]$
Discriminant $5.872\times 10^{32}$
Root discriminant \(66.14\)
Ramified primes $2,3,7,23$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $C_2^3:A_4^2.S_4$ (as 18T658)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^16 - 84*x^15 + 72*x^14 + 828*x^13 + 648*x^12 - 1548*x^11 - 8766*x^10 - 19708*x^9 + 32670*x^8 + 78804*x^7 + 80160*x^6 - 141084*x^5 - 452880*x^4 + 177516*x^3 + 64629*x^2 + 480636*x - 721709)
 
Copy content gp:K = bnfinit(y^18 - 9*y^16 - 84*y^15 + 72*y^14 + 828*y^13 + 648*y^12 - 1548*y^11 - 8766*y^10 - 19708*y^9 + 32670*y^8 + 78804*y^7 + 80160*y^6 - 141084*y^5 - 452880*y^4 + 177516*y^3 + 64629*y^2 + 480636*y - 721709, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 9*x^16 - 84*x^15 + 72*x^14 + 828*x^13 + 648*x^12 - 1548*x^11 - 8766*x^10 - 19708*x^9 + 32670*x^8 + 78804*x^7 + 80160*x^6 - 141084*x^5 - 452880*x^4 + 177516*x^3 + 64629*x^2 + 480636*x - 721709);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 9*x^16 - 84*x^15 + 72*x^14 + 828*x^13 + 648*x^12 - 1548*x^11 - 8766*x^10 - 19708*x^9 + 32670*x^8 + 78804*x^7 + 80160*x^6 - 141084*x^5 - 452880*x^4 + 177516*x^3 + 64629*x^2 + 480636*x - 721709)
 

\( x^{18} - 9 x^{16} - 84 x^{15} + 72 x^{14} + 828 x^{13} + 648 x^{12} - 1548 x^{11} - 8766 x^{10} + \cdots - 721709 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $18$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[2, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(587152195005575401214701453922304\) \(\medspace = 2^{12}\cdot 3^{37}\cdot 7^{12}\cdot 23\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(66.14\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(7\), \(23\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{69}) \)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{3}+\frac{1}{4}a$, $\frac{1}{4}a^{8}-\frac{1}{4}$, $\frac{1}{24}a^{9}-\frac{1}{8}a^{8}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{8}a+\frac{1}{24}$, $\frac{1}{24}a^{10}-\frac{1}{8}a^{8}-\frac{3}{8}a^{2}-\frac{1}{3}a+\frac{1}{8}$, $\frac{1}{24}a^{11}-\frac{1}{8}a^{8}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{8}a^{3}+\frac{1}{6}a^{2}-\frac{1}{4}a-\frac{1}{8}$, $\frac{1}{48}a^{12}-\frac{1}{16}a^{8}+\frac{1}{16}a^{4}-\frac{1}{6}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{3}{16}$, $\frac{1}{48}a^{13}-\frac{1}{48}a^{9}-\frac{1}{8}a^{8}-\frac{3}{16}a^{5}+\frac{1}{12}a^{4}+\frac{3}{16}a+\frac{1}{24}$, $\frac{1}{144}a^{14}-\frac{1}{144}a^{13}+\frac{1}{144}a^{12}-\frac{1}{72}a^{11}-\frac{1}{144}a^{10}+\frac{1}{144}a^{9}+\frac{1}{48}a^{8}-\frac{1}{12}a^{7}+\frac{1}{48}a^{6}+\frac{1}{144}a^{5}+\frac{35}{144}a^{4}-\frac{13}{72}a^{3}-\frac{59}{144}a^{2}-\frac{25}{144}a-\frac{47}{144}$, $\frac{1}{288}a^{15}-\frac{1}{288}a^{14}+\frac{1}{288}a^{13}+\frac{1}{288}a^{12}+\frac{5}{288}a^{11}-\frac{5}{288}a^{10}-\frac{1}{96}a^{9}-\frac{1}{96}a^{8}+\frac{1}{96}a^{7}-\frac{35}{288}a^{6}+\frac{35}{288}a^{5}+\frac{19}{288}a^{4}+\frac{7}{288}a^{3}+\frac{89}{288}a^{2}-\frac{17}{288}a-\frac{11}{96}$, $\frac{1}{4032}a^{16}-\frac{1}{2016}a^{15}-\frac{1}{672}a^{14}+\frac{1}{288}a^{13}-\frac{17}{2016}a^{12}-\frac{1}{96}a^{11}+\frac{5}{2016}a^{10}+\frac{5}{288}a^{9}-\frac{3}{28}a^{8}+\frac{35}{288}a^{7}-\frac{193}{2016}a^{6}-\frac{7}{96}a^{5}+\frac{289}{2016}a^{4}+\frac{7}{288}a^{3}+\frac{5}{672}a^{2}-\frac{151}{2016}a+\frac{271}{4032}$, $\frac{1}{24\cdots 48}a^{17}+\frac{99\cdots 67}{83\cdots 16}a^{16}-\frac{13\cdots 43}{77\cdots 64}a^{15}+\frac{20\cdots 87}{62\cdots 12}a^{14}-\frac{11\cdots 11}{20\cdots 04}a^{13}+\frac{16\cdots 27}{15\cdots 28}a^{12}-\frac{51\cdots 71}{31\cdots 56}a^{11}+\frac{10\cdots 03}{69\cdots 68}a^{10}+\frac{84\cdots 51}{12\cdots 24}a^{9}+\frac{58\cdots 53}{12\cdots 24}a^{8}+\frac{18\cdots 55}{25\cdots 88}a^{7}-\frac{53\cdots 67}{62\cdots 12}a^{6}+\frac{76\cdots 39}{62\cdots 12}a^{5}+\frac{62\cdots 45}{10\cdots 52}a^{4}+\frac{51\cdots 03}{31\cdots 56}a^{3}+\frac{19\cdots 37}{62\cdots 12}a^{2}+\frac{14\cdots 93}{27\cdots 72}a-\frac{77\cdots 11}{24\cdots 48}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $9$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{76\cdots 69}{41\cdots 56}a^{17}+\frac{17\cdots 67}{41\cdots 56}a^{16}-\frac{35\cdots 33}{26\cdots 16}a^{15}-\frac{18\cdots 17}{10\cdots 64}a^{14}-\frac{23\cdots 25}{10\cdots 64}a^{13}+\frac{38\cdots 31}{26\cdots 16}a^{12}+\frac{19\cdots 59}{52\cdots 32}a^{11}+\frac{22\cdots 67}{10\cdots 64}a^{10}-\frac{77\cdots 31}{69\cdots 76}a^{9}-\frac{13\cdots 25}{20\cdots 28}a^{8}-\frac{12\cdots 65}{26\cdots 16}a^{7}+\frac{13\cdots 33}{10\cdots 64}a^{6}+\frac{26\cdots 31}{10\cdots 64}a^{5}+\frac{22\cdots 85}{52\cdots 32}a^{4}-\frac{19\cdots 67}{52\cdots 32}a^{3}+\frac{34\cdots 17}{10\cdots 64}a^{2}-\frac{10\cdots 95}{41\cdots 56}a-\frac{13\cdots 55}{13\cdots 52}$, $\frac{79\cdots 07}{12\cdots 24}a^{17}+\frac{30\cdots 95}{41\cdots 08}a^{16}-\frac{15\cdots 61}{31\cdots 56}a^{15}-\frac{15\cdots 03}{31\cdots 56}a^{14}-\frac{59\cdots 41}{25\cdots 88}a^{13}+\frac{15\cdots 93}{31\cdots 56}a^{12}+\frac{10\cdots 65}{31\cdots 56}a^{11}-\frac{10\cdots 21}{10\cdots 52}a^{10}-\frac{23\cdots 93}{62\cdots 12}a^{9}-\frac{47\cdots 53}{62\cdots 12}a^{8}+\frac{17\cdots 15}{10\cdots 52}a^{7}+\frac{15\cdots 55}{31\cdots 56}a^{6}-\frac{25\cdots 97}{15\cdots 28}a^{5}-\frac{90\cdots 97}{10\cdots 52}a^{4}-\frac{52\cdots 25}{31\cdots 56}a^{3}+\frac{46\cdots 91}{31\cdots 56}a^{2}+\frac{94\cdots 61}{41\cdots 08}a-\frac{34\cdots 43}{12\cdots 24}$, $\frac{42\cdots 51}{83\cdots 16}a^{17}-\frac{28\cdots 35}{24\cdots 48}a^{16}-\frac{39\cdots 91}{62\cdots 12}a^{15}-\frac{97\cdots 59}{25\cdots 88}a^{14}+\frac{20\cdots 63}{31\cdots 56}a^{13}+\frac{32\cdots 25}{62\cdots 12}a^{12}-\frac{16\cdots 29}{69\cdots 68}a^{11}-\frac{34\cdots 05}{15\cdots 28}a^{10}-\frac{22\cdots 79}{12\cdots 24}a^{9}-\frac{18\cdots 15}{41\cdots 08}a^{8}+\frac{15\cdots 31}{62\cdots 12}a^{7}+\frac{86\cdots 49}{15\cdots 28}a^{6}-\frac{22\cdots 39}{25\cdots 88}a^{5}-\frac{76\cdots 47}{62\cdots 12}a^{4}+\frac{44\cdots 49}{62\cdots 12}a^{3}+\frac{27\cdots 14}{21\cdots 99}a^{2}+\frac{12\cdots 85}{24\cdots 48}a-\frac{82\cdots 11}{24\cdots 48}$, $\frac{15\cdots 43}{15\cdots 28}a^{17}+\frac{61\cdots 61}{20\cdots 04}a^{16}-\frac{33\cdots 65}{31\cdots 56}a^{15}-\frac{26\cdots 21}{31\cdots 56}a^{14}+\frac{31\cdots 49}{51\cdots 76}a^{13}+\frac{29\cdots 57}{31\cdots 56}a^{12}+\frac{15\cdots 09}{31\cdots 56}a^{11}-\frac{77\cdots 07}{34\cdots 84}a^{10}-\frac{47\cdots 17}{77\cdots 64}a^{9}-\frac{30\cdots 29}{15\cdots 28}a^{8}+\frac{24\cdots 71}{10\cdots 52}a^{7}+\frac{28\cdots 61}{31\cdots 56}a^{6}-\frac{15\cdots 87}{15\cdots 28}a^{5}-\frac{87\cdots 51}{10\cdots 52}a^{4}-\frac{29\cdots 97}{31\cdots 56}a^{3}+\frac{41\cdots 79}{31\cdots 56}a^{2}+\frac{19\cdots 63}{17\cdots 92}a-\frac{58\cdots 55}{62\cdots 12}$, $\frac{43\cdots 71}{69\cdots 68}a^{17}+\frac{77\cdots 49}{41\cdots 08}a^{16}-\frac{46\cdots 73}{69\cdots 68}a^{15}-\frac{11\cdots 31}{20\cdots 04}a^{14}+\frac{81\cdots 25}{20\cdots 04}a^{13}+\frac{12\cdots 21}{20\cdots 04}a^{12}+\frac{89\cdots 17}{20\cdots 04}a^{11}-\frac{34\cdots 11}{20\cdots 04}a^{10}-\frac{12\cdots 21}{20\cdots 04}a^{9}-\frac{41\cdots 97}{34\cdots 84}a^{8}+\frac{51\cdots 11}{20\cdots 04}a^{7}+\frac{47\cdots 61}{69\cdots 68}a^{6}+\frac{38\cdots 27}{20\cdots 04}a^{5}-\frac{25\cdots 81}{20\cdots 04}a^{4}-\frac{69\cdots 61}{20\cdots 04}a^{3}+\frac{47\cdots 79}{20\cdots 04}a^{2}+\frac{11\cdots 87}{25\cdots 88}a-\frac{21\cdots 25}{41\cdots 08}$, $\frac{46\cdots 99}{35\cdots 64}a^{17}-\frac{17\cdots 99}{39\cdots 96}a^{16}-\frac{94\cdots 39}{44\cdots 08}a^{15}-\frac{81\cdots 91}{89\cdots 16}a^{14}+\frac{15\cdots 87}{29\cdots 72}a^{13}+\frac{69\cdots 03}{44\cdots 08}a^{12}-\frac{37\cdots 01}{22\cdots 04}a^{11}-\frac{30\cdots 81}{29\cdots 72}a^{10}-\frac{26\cdots 47}{17\cdots 32}a^{9}-\frac{25\cdots 11}{17\cdots 32}a^{8}+\frac{68\cdots 55}{49\cdots 12}a^{7}+\frac{12\cdots 03}{89\cdots 16}a^{6}-\frac{14\cdots 55}{89\cdots 16}a^{5}-\frac{56\cdots 93}{74\cdots 68}a^{4}+\frac{16\cdots 73}{22\cdots 04}a^{3}+\frac{23\cdots 39}{89\cdots 16}a^{2}+\frac{10\cdots 37}{11\cdots 88}a-\frac{27\cdots 11}{35\cdots 64}$, $\frac{19\cdots 49}{83\cdots 16}a^{17}-\frac{59\cdots 81}{27\cdots 72}a^{16}-\frac{16\cdots 83}{69\cdots 68}a^{15}-\frac{17\cdots 83}{10\cdots 52}a^{14}+\frac{41\cdots 31}{10\cdots 52}a^{13}+\frac{43\cdots 67}{20\cdots 04}a^{12}-\frac{43\cdots 25}{69\cdots 68}a^{11}-\frac{31\cdots 17}{34\cdots 84}a^{10}-\frac{96\cdots 59}{41\cdots 08}a^{9}-\frac{98\cdots 13}{41\cdots 08}a^{8}+\frac{12\cdots 59}{69\cdots 68}a^{7}+\frac{96\cdots 55}{34\cdots 84}a^{6}-\frac{47\cdots 11}{25\cdots 88}a^{5}-\frac{22\cdots 13}{20\cdots 04}a^{4}-\frac{38\cdots 33}{20\cdots 04}a^{3}+\frac{46\cdots 79}{34\cdots 84}a^{2}+\frac{87\cdots 39}{27\cdots 72}a+\frac{38\cdots 77}{83\cdots 16}$, $\frac{71\cdots 49}{83\cdots 16}a^{17}-\frac{12\cdots 99}{24\cdots 48}a^{16}-\frac{52\cdots 81}{31\cdots 56}a^{15}-\frac{30\cdots 47}{69\cdots 68}a^{14}+\frac{34\cdots 99}{62\cdots 12}a^{13}+\frac{48\cdots 55}{38\cdots 82}a^{12}-\frac{72\cdots 91}{25\cdots 88}a^{11}-\frac{78\cdots 71}{62\cdots 12}a^{10}-\frac{20\cdots 63}{12\cdots 24}a^{9}+\frac{78\cdots 19}{41\cdots 08}a^{8}+\frac{67\cdots 89}{31\cdots 56}a^{7}+\frac{13\cdots 31}{62\cdots 12}a^{6}-\frac{16\cdots 89}{69\cdots 68}a^{5}-\frac{43\cdots 67}{31\cdots 56}a^{4}-\frac{69\cdots 37}{38\cdots 82}a^{3}+\frac{31\cdots 65}{20\cdots 04}a^{2}+\frac{85\cdots 79}{24\cdots 48}a+\frac{16\cdots 89}{24\cdots 48}$, $\frac{65\cdots 65}{24\cdots 48}a^{17}-\frac{12\cdots 89}{24\cdots 48}a^{16}-\frac{87\cdots 21}{62\cdots 12}a^{15}-\frac{20\cdots 09}{10\cdots 52}a^{14}+\frac{58\cdots 99}{10\cdots 52}a^{13}+\frac{68\cdots 35}{62\cdots 12}a^{12}-\frac{25\cdots 51}{62\cdots 12}a^{11}-\frac{10\cdots 95}{31\cdots 56}a^{10}-\frac{69\cdots 37}{41\cdots 08}a^{9}-\frac{24\cdots 43}{12\cdots 24}a^{8}+\frac{77\cdots 41}{62\cdots 12}a^{7}-\frac{95\cdots 39}{31\cdots 56}a^{6}+\frac{14\cdots 99}{51\cdots 76}a^{5}-\frac{61\cdots 85}{69\cdots 68}a^{4}+\frac{32\cdots 39}{62\cdots 12}a^{3}-\frac{16\cdots 79}{31\cdots 56}a^{2}+\frac{29\cdots 33}{24\cdots 48}a-\frac{82\cdots 03}{83\cdots 16}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 4159681971.98 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{8}\cdot 4159681971.98 \cdot 2}{2\cdot\sqrt{587152195005575401214701453922304}}\cr\approx \mathstrut & 1.66795266566 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^16 - 84*x^15 + 72*x^14 + 828*x^13 + 648*x^12 - 1548*x^11 - 8766*x^10 - 19708*x^9 + 32670*x^8 + 78804*x^7 + 80160*x^6 - 141084*x^5 - 452880*x^4 + 177516*x^3 + 64629*x^2 + 480636*x - 721709) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 9*x^16 - 84*x^15 + 72*x^14 + 828*x^13 + 648*x^12 - 1548*x^11 - 8766*x^10 - 19708*x^9 + 32670*x^8 + 78804*x^7 + 80160*x^6 - 141084*x^5 - 452880*x^4 + 177516*x^3 + 64629*x^2 + 480636*x - 721709, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 9*x^16 - 84*x^15 + 72*x^14 + 828*x^13 + 648*x^12 - 1548*x^11 - 8766*x^10 - 19708*x^9 + 32670*x^8 + 78804*x^7 + 80160*x^6 - 141084*x^5 - 452880*x^4 + 177516*x^3 + 64629*x^2 + 480636*x - 721709); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 9*x^16 - 84*x^15 + 72*x^14 + 828*x^13 + 648*x^12 - 1548*x^11 - 8766*x^10 - 19708*x^9 + 32670*x^8 + 78804*x^7 + 80160*x^6 - 141084*x^5 - 452880*x^4 + 177516*x^3 + 64629*x^2 + 480636*x - 721709); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^3:A_4^2.S_4$ (as 18T658):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 27648
The 96 conjugacy class representatives for $C_2^3:A_4^2.S_4$
Character table for $C_2^3:A_4^2.S_4$

Intermediate fields

3.3.756.1, 9.9.2917096519063104.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 18 sibling: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.3.0.1}{3} }^{6}$ R ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ R ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{4}$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{4}$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{4}$ ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{4}$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.3.2a1.1$x^{3} + 2$$3$$1$$2$$S_3$$$[\ ]_{3}^{2}$$
2.1.3.2a1.1$x^{3} + 2$$3$$1$$2$$S_3$$$[\ ]_{3}^{2}$$
2.4.3.8a1.2$x^{12} + 3 x^{9} + 3 x^{8} + 3 x^{6} + 6 x^{5} + 3 x^{4} + x^{3} + 3 x^{2} + 3 x + 3$$3$$4$$8$$C_3 : C_4$$$[\ ]_{3}^{4}$$
\(3\) Copy content Toggle raw display 3.1.18.37c4.17$x^{18} + 9 x^{8} + 6 x^{6} + 9 x^{4} + 9 x^{2} + 3$$18$$1$$37$not computednot computed
\(7\) Copy content Toggle raw display 7.1.2.1a1.1$x^{2} + 7$$2$$1$$1$$C_2$$$[\ ]_{2}$$
7.2.1.0a1.1$x^{2} + 6 x + 3$$1$$2$$0$$C_2$$$[\ ]^{2}$$
7.1.2.1a1.1$x^{2} + 7$$2$$1$$1$$C_2$$$[\ ]_{2}$$
7.2.6.10a1.4$x^{12} + 36 x^{11} + 558 x^{10} + 4860 x^{9} + 26055 x^{8} + 88776 x^{7} + 192996 x^{6} + 266328 x^{5} + 234495 x^{4} + 131220 x^{3} + 45198 x^{2} + 8755 x + 757$$6$$2$$10$$C_6\times C_2$$$[\ ]_{6}^{2}$$
\(23\) Copy content Toggle raw display 23.2.1.0a1.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$$[\ ]^{2}$$
23.2.1.0a1.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$$[\ ]^{2}$$
23.1.2.1a1.1$x^{2} + 23$$2$$1$$1$$C_2$$$[\ ]_{2}$$
23.12.1.0a1.1$x^{12} + 21 x^{7} + 21 x^{6} + 15 x^{5} + 14 x^{4} + 12 x^{3} + 18 x^{2} + 12 x + 5$$1$$12$$0$$C_{12}$$$[\ ]^{12}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)