Normalized defining polynomial
\( x^{18} - 12 x^{16} - 6 x^{15} + 60 x^{14} + 60 x^{13} - 171 x^{12} - 228 x^{11} + 468 x^{10} + 620 x^{9} - 972 x^{8} - 1308 x^{7} + 2259 x^{6} + 1140 x^{5} - 2700 x^{4} + 114 x^{3} + 1188 x^{2} - 729 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(58498535041007616000000000=2^{33}\cdot 3^{20}\cdot 5^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{9} + \frac{1}{6} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{10} + \frac{1}{6} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{60} a^{14} - \frac{1}{15} a^{13} - \frac{1}{30} a^{12} - \frac{2}{15} a^{11} - \frac{1}{60} a^{10} + \frac{1}{15} a^{9} + \frac{13}{60} a^{8} + \frac{2}{15} a^{7} + \frac{13}{60} a^{6} - \frac{1}{10} a^{5} + \frac{3}{20} a^{4} - \frac{3}{10} a^{3} + \frac{3}{10} a^{2} + \frac{1}{10} a + \frac{7}{20}$, $\frac{1}{25560} a^{15} - \frac{59}{25560} a^{14} + \frac{989}{12780} a^{13} + \frac{179}{3195} a^{12} + \frac{6049}{25560} a^{11} + \frac{1759}{25560} a^{10} + \frac{2713}{25560} a^{9} - \frac{4577}{25560} a^{8} - \frac{10727}{25560} a^{7} - \frac{569}{2840} a^{6} + \frac{581}{2840} a^{5} + \frac{4229}{8520} a^{4} - \frac{368}{1065} a^{3} + \frac{1121}{4260} a^{2} - \frac{13}{120} a - \frac{249}{568}$, $\frac{1}{70034400} a^{16} - \frac{91}{35017200} a^{15} + \frac{337681}{70034400} a^{14} - \frac{822553}{35017200} a^{13} + \frac{3164641}{70034400} a^{12} + \frac{64921}{17508600} a^{11} - \frac{1521353}{7003440} a^{10} + \frac{1161907}{17508600} a^{9} - \frac{8566999}{35017200} a^{8} + \frac{1206049}{5836200} a^{7} - \frac{35347}{466896} a^{6} - \frac{13793}{82200} a^{5} + \frac{9731987}{23344800} a^{4} - \frac{5012041}{11672400} a^{3} - \frac{1696973}{23344800} a^{2} - \frac{1254589}{3890800} a - \frac{376951}{7781600}$, $\frac{1}{29437349248800} a^{17} - \frac{479}{136284024300} a^{16} + \frac{10950607}{1962489949920} a^{15} + \frac{1357243103}{1226556218700} a^{14} - \frac{812090550049}{9812449749600} a^{13} + \frac{170422151347}{4906224874800} a^{12} + \frac{366086878729}{1635408291600} a^{11} - \frac{48196084861}{2453112437400} a^{10} - \frac{372314748673}{1635408291600} a^{9} + \frac{1391660044571}{7359337312200} a^{8} + \frac{7106469037}{181712032400} a^{7} - \frac{258242487373}{2453112437400} a^{6} - \frac{1094419157923}{3270816583200} a^{5} - \frac{485130754939}{2453112437400} a^{4} + \frac{258148152959}{1090272194400} a^{3} + \frac{854439081593}{2453112437400} a^{2} + \frac{1758607547}{43610887776} a + \frac{49951757009}{181712032400}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2138977.3943718825 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), 3.1.108.1, 3.1.1080.1, 6.2.20736000.2 x2, 6.2.186624000.3, 6.2.46656000.4, 9.1.60466176000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.5 | $x^{6} + 6$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.12.22.60 | $x^{12} - 84 x^{10} + 444 x^{8} + 32 x^{6} - 272 x^{4} - 320 x^{2} + 64$ | $6$ | $2$ | $22$ | $D_6$ | $[3]_{3}^{2}$ | |
| $3$ | 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
| 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |