Normalized defining polynomial
\( x^{18} + 6 x^{16} - 7 x^{15} + 105 x^{14} + 78 x^{13} - 75 x^{12} + 1626 x^{11} + 441 x^{10} + 6387 x^{9} + 8199 x^{8} + 5841 x^{7} + 23235 x^{6} - 7398 x^{5} + 23706 x^{4} - 18102 x^{3} + 9054 x^{2} - 1566 x + 2538 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5288763579352254033850301939712=2^{18}\cdot 3^{25}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{12}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{13}$, $\frac{1}{177475572294486492431613844209915849095127} a^{17} - \frac{1249761363520534552715474174450178960308}{59158524098162164143871281403305283031709} a^{16} + \frac{1429141574711624851025508338556231775428}{19719508032720721381290427134435094343903} a^{15} - \frac{55849964577594582701393052629152512405256}{177475572294486492431613844209915849095127} a^{14} - \frac{13174987868114447398891000494914154401282}{59158524098162164143871281403305283031709} a^{13} - \frac{1264066170552228382675836523485968302639}{3479913182244833184933604788429722531277} a^{12} + \frac{26117108753324603786869976745094539432818}{59158524098162164143871281403305283031709} a^{11} + \frac{15742767588318423527206255272875914444922}{59158524098162164143871281403305283031709} a^{10} + \frac{9835959070175603719587048712866100856307}{19719508032720721381290427134435094343903} a^{9} + \frac{1412013041391080924958227298282630343037}{59158524098162164143871281403305283031709} a^{8} + \frac{8487970285385456960893177460623683530413}{19719508032720721381290427134435094343903} a^{7} - \frac{1563637162622029795575471255269993518108}{19719508032720721381290427134435094343903} a^{6} - \frac{22279123680818714562360975617553211699867}{59158524098162164143871281403305283031709} a^{5} - \frac{164367286633645175310555505491810424602}{19719508032720721381290427134435094343903} a^{4} - \frac{6096690975699087073881375186911011177209}{19719508032720721381290427134435094343903} a^{3} + \frac{10680061654547541977677229681707435968620}{59158524098162164143871281403305283031709} a^{2} - \frac{5285130210897553119442120253540659515330}{19719508032720721381290427134435094343903} a + \frac{9779472207092193702122970331532674115238}{19719508032720721381290427134435094343903}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 353160089.638 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 180 conjugacy class representatives for t18n881 are not computed |
| Character table for t18n881 is not computed |
Intermediate fields
| 3.3.564.1, 9.9.165968803220544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.10.5 | $x^{6} + 2 x^{5} + 6$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
| 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.12.19.8 | $x^{12} - 3 x^{11} + 3 x^{8} - 3 x^{6} - 3 x^{3} + 3$ | $12$ | $1$ | $19$ | 12T38 | $[3/2, 2]_{4}^{2}$ | |
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.8.6.1 | $x^{8} - 13489 x^{4} + 63091249$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |