Normalized defining polynomial
\( x^{18} - 2 x^{16} - 12 x^{14} + 74 x^{12} + 140 x^{10} - 1356 x^{8} + 3457 x^{6} - 3854 x^{4} + 2004 x^{2} - 288 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(513058606471919567779135488=2^{27}\cdot 3^{8}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2}$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{8} + \frac{1}{6} a^{2}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{3}$, $\frac{1}{12} a^{10} + \frac{1}{12} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{36} a^{11} - \frac{1}{18} a^{9} + \frac{13}{36} a^{5} - \frac{1}{2} a^{4} + \frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{36} a^{12} + \frac{1}{36} a^{10} + \frac{1}{36} a^{6} - \frac{1}{2} a^{5} - \frac{17}{36} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{36} a^{13} + \frac{1}{18} a^{9} + \frac{1}{36} a^{7} - \frac{1}{3} a^{5} - \frac{1}{9} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{108} a^{14} - \frac{1}{108} a^{12} + \frac{1}{108} a^{10} + \frac{7}{108} a^{8} - \frac{1}{108} a^{6} - \frac{1}{2} a^{5} + \frac{37}{108} a^{4} + \frac{2}{9} a^{2} + \frac{1}{3}$, $\frac{1}{216} a^{15} - \frac{1}{216} a^{14} + \frac{1}{108} a^{13} + \frac{1}{216} a^{12} + \frac{1}{216} a^{11} + \frac{1}{27} a^{10} + \frac{13}{216} a^{9} - \frac{7}{216} a^{8} + \frac{1}{108} a^{7} - \frac{17}{216} a^{6} + \frac{55}{216} a^{5} - \frac{8}{27} a^{4} + \frac{11}{36} a^{3} - \frac{4}{9} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{30872232} a^{16} - \frac{140563}{30872232} a^{14} - \frac{1}{72} a^{13} + \frac{80993}{15436116} a^{12} - \frac{1}{72} a^{11} + \frac{357517}{30872232} a^{10} - \frac{1}{12} a^{9} - \frac{2100529}{30872232} a^{8} + \frac{5}{72} a^{7} + \frac{288191}{15436116} a^{6} + \frac{29}{72} a^{5} + \frac{606623}{1715124} a^{4} + \frac{1}{4} a^{3} - \frac{327121}{857562} a^{2} - \frac{1}{2} a + \frac{28674}{142927}$, $\frac{1}{30872232} a^{17} + \frac{197}{2572686} a^{15} - \frac{68287}{5145372} a^{13} - \frac{178559}{15436116} a^{11} - \frac{13471}{1715124} a^{9} + \frac{779}{5145372} a^{7} + \frac{2486521}{30872232} a^{5} + \frac{2182157}{5145372} a^{3} - \frac{85579}{285854} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8577930.408608785 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 3.1.6936.1, 3.1.867.1, 6.2.384864768.1, 6.2.1331712.1 x2, 6.2.384864768.2, 9.1.1001033261568.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |