Normalized defining polynomial
\( x^{18} - 66 x^{15} - 486 x^{12} - 7106 x^{9} - 47952 x^{6} - 39366 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5018135666827513318018822176768=2^{26}\cdot 3^{32}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{15} a^{9} + \frac{2}{15} a^{6} - \frac{1}{3} a^{3} - \frac{1}{5}$, $\frac{1}{15} a^{10} + \frac{2}{15} a^{7} - \frac{1}{3} a^{4} - \frac{1}{5} a$, $\frac{1}{45} a^{11} - \frac{1}{15} a^{8} + \frac{22}{45} a^{2}$, $\frac{1}{135} a^{12} - \frac{1}{45} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{67}{135} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{405} a^{13} - \frac{4}{135} a^{10} + \frac{1}{15} a^{7} + \frac{157}{405} a^{4} + \frac{2}{5} a$, $\frac{1}{3645} a^{14} - \frac{1}{1215} a^{13} + \frac{1}{405} a^{12} - \frac{13}{1215} a^{11} + \frac{13}{405} a^{10} - \frac{4}{135} a^{9} - \frac{7}{45} a^{8} + \frac{2}{15} a^{7} + \frac{1}{15} a^{6} + \frac{1642}{3645} a^{5} + \frac{383}{1215} a^{4} + \frac{22}{405} a^{3} + \frac{19}{135} a^{2} - \frac{19}{45} a + \frac{1}{15}$, $\frac{1}{317024031735} a^{15} + \frac{322033964}{105674677245} a^{12} + \frac{60126457}{3913876935} a^{9} + \frac{26899001581}{317024031735} a^{6} - \frac{261593342}{2348326161} a^{3} + \frac{177464221}{434875215}$, $\frac{1}{951072095205} a^{16} + \frac{322033964}{317024031735} a^{13} + \frac{60126457}{11741630805} a^{10} + \frac{26899001581}{951072095205} a^{7} + \frac{2086732819}{7044978483} a^{4} - \frac{257410994}{1304625645} a$, $\frac{1}{2853216285615} a^{17} + \frac{12221767}{190214419041} a^{14} + \frac{1}{1215} a^{13} - \frac{1}{405} a^{12} - \frac{38417453}{3913876935} a^{11} - \frac{13}{405} a^{10} + \frac{4}{135} a^{9} - \frac{290125030154}{2853216285615} a^{8} - \frac{2}{15} a^{7} - \frac{1}{15} a^{6} + \frac{3697678747}{11741630805} a^{5} - \frac{383}{1215} a^{4} - \frac{22}{405} a^{3} + \frac{1192173056}{3913876935} a^{2} + \frac{19}{45} a - \frac{1}{15}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 422411479.76656485 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_9:C_3$ (as 18T45):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times D_9:C_3$ |
| Character table for $C_2\times D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{7}) \), 3.1.108.1, 6.2.64012032.1, 9.1.11019960576.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.16.6 | $x^{9} + 6 x^{8} + 3 x^{3} + 18 x + 6$ | $9$ | $1$ | $16$ | $(C_9:C_3):C_2$ | $[3/2, 2, 13/6]_{2}$ |
| 3.9.16.6 | $x^{9} + 6 x^{8} + 3 x^{3} + 18 x + 6$ | $9$ | $1$ | $16$ | $(C_9:C_3):C_2$ | $[3/2, 2, 13/6]_{2}$ | |
| 7 | Data not computed | ||||||