Normalized defining polynomial
\( x^{18} - 24 x^{15} - 126 x^{14} + 252 x^{13} - 129 x^{12} + 2124 x^{11} + 5310 x^{10} - 26240 x^{9} + 31968 x^{8} - 68634 x^{7} - 128073 x^{6} + 865368 x^{5} - 878454 x^{4} - 250188 x^{3} + 404766 x^{2} + 228402 x - 168143 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(488313544356899506574934242512896=2^{12}\cdot 3^{45}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{6}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{6} a$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{6} a^{2}$, $\frac{1}{6} a^{12} + \frac{1}{3} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{13} + \frac{1}{3} a^{4} - \frac{1}{2} a$, $\frac{1}{18} a^{14} + \frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{1}{18} a^{11} - \frac{1}{18} a^{10} - \frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{18} a^{5} - \frac{1}{18} a^{4} - \frac{1}{18} a^{3} + \frac{2}{9} a^{2} + \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{18} a^{15} + \frac{1}{18} a^{12} + \frac{1}{18} a^{9} - \frac{7}{18} a^{6} + \frac{1}{9} a^{3} + \frac{1}{9}$, $\frac{1}{36} a^{16} - \frac{1}{36} a^{15} + \frac{1}{36} a^{13} - \frac{1}{36} a^{12} - \frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{2} a^{8} - \frac{4}{9} a^{7} - \frac{1}{18} a^{6} - \frac{7}{36} a^{4} + \frac{7}{36} a^{3} - \frac{1}{2} a^{2} - \frac{13}{36} a - \frac{5}{36}$, $\frac{1}{1299298087933618296182626748681486512023564} a^{17} + \frac{3292966194527204390390456196005124273911}{649649043966809148091313374340743256011782} a^{16} - \frac{3274106751195968141281322643920742431519}{1299298087933618296182626748681486512023564} a^{15} - \frac{693379552208500003383129889647329101859}{44803382342538561937331956851085741793916} a^{14} + \frac{24270729874033102481234516636499159086269}{649649043966809148091313374340743256011782} a^{13} - \frac{21459582087707859282219007363596943677583}{1299298087933618296182626748681486512023564} a^{12} - \frac{7257949749446763057182370678321624811256}{108274840661134858015218895723457209335297} a^{11} + \frac{7355066705599537816563082525056537591260}{108274840661134858015218895723457209335297} a^{10} - \frac{1789996962104862048390307682946598300693}{36091613553711619338406298574485736445099} a^{9} - \frac{22940161777646855882436330284039011988665}{324824521983404574045656687170371628005891} a^{8} - \frac{12411334385767608775511730310592286158501}{649649043966809148091313374340743256011782} a^{7} - \frac{7454688095825981220235441395459947951351}{649649043966809148091313374340743256011782} a^{6} - \frac{429693358276010119669675814944038173971457}{1299298087933618296182626748681486512023564} a^{5} - \frac{15249340921985395699716693042778858308013}{649649043966809148091313374340743256011782} a^{4} + \frac{223595196031088907445899149105798327355055}{1299298087933618296182626748681486512023564} a^{3} + \frac{173273543104718573011042453451063009647597}{433099362644539432060875582893828837341188} a^{2} - \frac{13145162793897927948918122830595664986699}{36091613553711619338406298574485736445099} a - \frac{4859221862694883177879846229060133603373}{433099362644539432060875582893828837341188}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4590277059.47542 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), 3.1.243.1, 6.2.60761421.1, 9.1.2008387814976.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |