Normalized defining polynomial
\( x^{18} - 9 x^{17} + 192 x^{15} - 216 x^{14} - 2304 x^{13} + 4032 x^{12} + 16326 x^{11} - 35847 x^{10} - 76955 x^{9} + 204984 x^{8} + 232506 x^{7} - 793350 x^{6} + 139896 x^{5} + 520524 x^{4} + 1788924 x^{3} - 3052656 x^{2} + 1155456 x - 512704 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(478338621956052404233641711607222272=2^{12}\cdot 3^{44}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{10} + \frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{12} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{11} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} - \frac{1}{12} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{24} a^{14} - \frac{1}{24} a^{13} - \frac{1}{24} a^{12} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} + \frac{1}{8} a^{9} - \frac{5}{24} a^{8} - \frac{1}{8} a^{7} + \frac{1}{6} a^{6} + \frac{1}{4} a^{5} + \frac{1}{12} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{24} a^{15} + \frac{1}{6} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{48} a^{16} - \frac{1}{24} a^{9} + \frac{7}{48} a^{8} + \frac{1}{12} a^{7} - \frac{1}{4} a^{6} + \frac{11}{24} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} + \frac{5}{12} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{11444726696638837958969876862192494164707619440} a^{17} - \frac{15989795847769827310233680840769253572344881}{3814908898879612652989958954064164721569206480} a^{16} - \frac{92444107531457645470102789462951073151162629}{5722363348319418979484938431096247082353809720} a^{15} + \frac{3064191505844267886928906072516714577701739}{248798406448670390412388627438967264450165640} a^{14} - \frac{224986729043689406036576009974007738010616711}{5722363348319418979484938431096247082353809720} a^{13} + \frac{91617315584885358566207997678455819244343387}{5722363348319418979484938431096247082353809720} a^{12} + \frac{9055218338413523965706641080100900791967897}{197322874079979964809825463141249899391510680} a^{11} + \frac{224285757243534607706732197312563028644885953}{2861181674159709489742469215548123541176904860} a^{10} + \frac{351536582803654812730017264678029421486098515}{2288945339327767591793975372438498832941523888} a^{9} - \frac{44262749613129993479065324969053446193454865}{762981779775922530597991790812832944313841296} a^{8} - \frac{17146616596480310307865535486264789942183182}{238431806179975790811872434629010295098075405} a^{7} - \frac{137859696305049924082772115288074672012479915}{1144472669663883795896987686219249416470761944} a^{6} + \frac{29519331082636961421992247353981473024063183}{104042969969443981445180698747204492406432904} a^{5} - \frac{123885497357496115457165636054388373955796593}{1430590837079854744871234607774061770588452430} a^{4} - \frac{3455122993512263300019610846607294824059337}{190745444943980632649497947703208236078460324} a^{3} + \frac{390814438545990527261698988547061723365777257}{953727224719903163247489738516041180392301620} a^{2} - \frac{78752457714731332571082872458579015367524}{238431806179975790811872434629010295098075405} a - \frac{287939375602635058392089209920430171533320371}{715295418539927372435617303887030885294226215}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 105098067902.09058 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 3.1.243.1, 6.2.290107737.3, 9.1.2008387814976.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |