Normalized defining polynomial
\( x^{18} - 2 x^{17} + 17 x^{15} - 17 x^{14} + 51 x^{13} + 119 x^{12} - 476 x^{11} + 493 x^{10} + 1632 x^{9} - 3638 x^{8} - 3502 x^{7} + 6936 x^{6} + 1972 x^{5} - 3451 x^{4} + 3264 x^{3} + 17 x^{2} - 750 x + 225 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4768875488962616064464333777=7^{8}\cdot 17^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{15} a^{9} + \frac{1}{15} a^{8} - \frac{2}{15} a^{7} + \frac{7}{15} a^{6} + \frac{1}{15} a^{5} - \frac{1}{3} a^{4} + \frac{7}{15} a^{3} + \frac{4}{15} a^{2} + \frac{1}{5} a$, $\frac{1}{15} a^{10} + \frac{2}{15} a^{8} - \frac{1}{15} a^{7} - \frac{1}{15} a^{6} - \frac{1}{15} a^{5} + \frac{2}{15} a^{4} + \frac{2}{15} a^{3} + \frac{4}{15} a^{2} + \frac{2}{15} a$, $\frac{1}{15} a^{11} + \frac{2}{15} a^{8} - \frac{7}{15} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{2}{15} a^{4} - \frac{1}{3} a^{3} - \frac{1}{15} a^{2} - \frac{1}{15} a$, $\frac{1}{195} a^{12} + \frac{4}{195} a^{11} + \frac{1}{39} a^{10} + \frac{4}{195} a^{9} - \frac{4}{65} a^{8} + \frac{11}{65} a^{7} - \frac{17}{65} a^{6} + \frac{18}{65} a^{5} + \frac{38}{195} a^{4} + \frac{8}{195} a^{3} - \frac{62}{195} a^{2} - \frac{73}{195} a - \frac{3}{13}$, $\frac{1}{195} a^{13} + \frac{2}{195} a^{11} - \frac{1}{65} a^{10} - \frac{2}{195} a^{9} + \frac{29}{195} a^{8} - \frac{79}{195} a^{7} - \frac{28}{195} a^{6} - \frac{7}{39} a^{5} + \frac{38}{195} a^{4} - \frac{27}{65} a^{3} - \frac{7}{195} a^{2} + \frac{1}{15} a - \frac{1}{13}$, $\frac{1}{975} a^{14} - \frac{1}{975} a^{12} - \frac{1}{65} a^{11} - \frac{2}{65} a^{10} - \frac{3}{325} a^{9} - \frac{32}{195} a^{8} + \frac{68}{975} a^{7} + \frac{79}{975} a^{6} - \frac{397}{975} a^{5} - \frac{4}{25} a^{4} + \frac{476}{975} a^{3} - \frac{217}{975} a^{2} + \frac{7}{195} a - \frac{6}{13}$, $\frac{1}{4875} a^{15} + \frac{2}{4875} a^{14} - \frac{1}{4875} a^{13} + \frac{1}{1625} a^{12} + \frac{4}{975} a^{11} + \frac{32}{1625} a^{10} + \frac{97}{4875} a^{9} - \frac{167}{4875} a^{8} - \frac{102}{325} a^{7} + \frac{41}{4875} a^{6} + \frac{34}{75} a^{5} - \frac{896}{4875} a^{4} + \frac{283}{975} a^{3} + \frac{376}{4875} a^{2} - \frac{28}{65} a - \frac{11}{65}$, $\frac{1}{102375} a^{16} - \frac{1}{14625} a^{15} + \frac{2}{34125} a^{14} - \frac{188}{102375} a^{13} - \frac{1}{14625} a^{12} + \frac{397}{34125} a^{11} - \frac{467}{102375} a^{10} + \frac{562}{20475} a^{9} + \frac{103}{1125} a^{8} + \frac{199}{2625} a^{7} + \frac{341}{102375} a^{6} + \frac{21514}{102375} a^{5} + \frac{1249}{4875} a^{4} - \frac{25009}{102375} a^{3} + \frac{18841}{102375} a^{2} - \frac{179}{1365} a + \frac{6}{35}$, $\frac{1}{313358232607875} a^{17} + \frac{1404856129}{313358232607875} a^{16} + \frac{25409243719}{313358232607875} a^{15} + \frac{155108268703}{313358232607875} a^{14} + \frac{7330690499}{4820895886275} a^{13} - \frac{209454488186}{313358232607875} a^{12} + \frac{41219692024}{3443497061625} a^{11} - \frac{2913813250412}{313358232607875} a^{10} - \frac{739245317434}{24104479431375} a^{9} - \frac{1195848720691}{313358232607875} a^{8} + \frac{61169396576297}{313358232607875} a^{7} - \frac{3361738081379}{8953092360225} a^{6} + \frac{186254065181}{777563852625} a^{5} + \frac{4692836456396}{12534329304315} a^{4} + \frac{11845255351616}{44765461801125} a^{3} + \frac{6362826393968}{44765461801125} a^{2} + \frac{39793089398}{134777734455} a + \frac{351822543028}{1392703256035}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10997947.525 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $D_{18}$ |
| Character table for $D_{18}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 3.1.2023.1, 6.2.69572993.1, 9.1.16748793615841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | $18$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17 | Data not computed | ||||||
Additional information
This field is associated with the 17-torsion points on the elliptic curves from the isogeny class 49.a1, a curve with complex multiplication by $\Q(\sqrt{-7})$.
Polynomial computed by Noam Elkies.