Normalized defining polynomial
\( x^{18} - 3 x^{17} + x^{16} + 5 x^{15} + x^{14} - 20 x^{13} - 5 x^{12} + 46 x^{11} + 9 x^{10} - 67 x^{9} + 12 x^{8} + 152 x^{7} + 45 x^{6} - 118 x^{5} - 50 x^{4} + 38 x^{3} + 18 x^{2} - 4 x - 2 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4541904751770960658432=2^{19}\cdot 59^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} - \frac{2}{13} a^{13} + \frac{4}{13} a^{11} + \frac{2}{13} a^{10} + \frac{1}{13} a^{9} + \frac{2}{13} a^{8} - \frac{5}{13} a^{7} + \frac{5}{13} a^{6} - \frac{1}{13} a^{5} - \frac{4}{13} a^{4} + \frac{1}{13} a^{3} - \frac{3}{13} a^{2} - \frac{6}{13} a - \frac{2}{13}$, $\frac{1}{13} a^{15} - \frac{4}{13} a^{13} + \frac{4}{13} a^{12} - \frac{3}{13} a^{11} + \frac{5}{13} a^{10} + \frac{4}{13} a^{9} - \frac{1}{13} a^{8} - \frac{5}{13} a^{7} - \frac{4}{13} a^{6} - \frac{6}{13} a^{5} + \frac{6}{13} a^{4} - \frac{1}{13} a^{3} + \frac{1}{13} a^{2} - \frac{1}{13} a - \frac{4}{13}$, $\frac{1}{169} a^{16} + \frac{4}{169} a^{15} + \frac{2}{169} a^{14} + \frac{80}{169} a^{13} + \frac{17}{169} a^{11} - \frac{55}{169} a^{10} + \frac{47}{169} a^{9} - \frac{36}{169} a^{8} - \frac{67}{169} a^{7} + \frac{8}{169} a^{6} - \frac{11}{169} a^{5} - \frac{79}{169} a^{4} - \frac{36}{169} a^{3} - \frac{28}{169} a^{2} - \frac{31}{169} a + \frac{50}{169}$, $\frac{1}{10969283} a^{17} + \frac{19296}{10969283} a^{16} - \frac{107768}{10969283} a^{15} + \frac{260002}{10969283} a^{14} + \frac{180754}{843791} a^{13} + \frac{2721554}{10969283} a^{12} + \frac{656055}{10969283} a^{11} + \frac{3626514}{10969283} a^{10} - \frac{2357638}{10969283} a^{9} - \frac{5116854}{10969283} a^{8} + \frac{58443}{10969283} a^{7} + \frac{3053299}{10969283} a^{6} - \frac{1954993}{10969283} a^{5} - \frac{5137090}{10969283} a^{4} - \frac{3305928}{10969283} a^{3} + \frac{4358869}{10969283} a^{2} + \frac{847988}{10969283} a + \frac{19507}{843791}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6114.63195624 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:D_9$ (as 18T67):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_2\times C_2^2:D_9$ |
| Character table for $C_2\times C_2^2:D_9$ |
Intermediate fields
| 3.1.59.1, 6.2.1643032.1, 9.1.775511104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $18$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.9 | $x^{6} + 6 x^{4} + 2$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $59$ | 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |