Normalized defining polynomial
\( x^{18} - 24 x^{16} - 68 x^{15} + 54 x^{14} - 48 x^{13} - 926 x^{12} + 4500 x^{11} + 5175 x^{10} - 15140 x^{9} - 36108 x^{8} - 36432 x^{7} + 184739 x^{6} - 286776 x^{5} + 215448 x^{4} - 64832 x^{3} - 44352 x^{2} + 16896 x + 5632 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(420337214415108488729153861721645907968=2^{30}\cdot 3^{18}\cdot 7^{3}\cdot 11^{3}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $139.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{14} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{3}{8} a^{2}$, $\frac{1}{32} a^{15} - \frac{1}{4} a^{13} - \frac{1}{8} a^{12} - \frac{5}{16} a^{11} - \frac{1}{2} a^{10} + \frac{1}{16} a^{9} - \frac{3}{8} a^{8} - \frac{9}{32} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{3}{32} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{128} a^{16} - \frac{1}{32} a^{13} + \frac{27}{64} a^{12} - \frac{1}{8} a^{11} - \frac{7}{64} a^{10} + \frac{5}{32} a^{9} - \frac{25}{128} a^{8} + \frac{15}{32} a^{7} + \frac{7}{32} a^{6} + \frac{1}{8} a^{5} - \frac{61}{128} a^{4} - \frac{7}{16} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{188317717765025103838128052971815542469424896} a^{17} + \frac{112853536701837642942403797408173064391305}{94158858882512551919064026485907771234712448} a^{16} + \frac{51839324385407137278939398779570782241007}{11769857360314068989883003310738471404339056} a^{15} - \frac{337508733884222380632812672069795884066545}{47079429441256275959532013242953885617356224} a^{14} + \frac{17296814378931108439621241064762839879417015}{94158858882512551919064026485907771234712448} a^{13} - \frac{8788718603648114254515490756565405419154785}{47079429441256275959532013242953885617356224} a^{12} + \frac{39036059473976921320559313155045730898084345}{94158858882512551919064026485907771234712448} a^{11} + \frac{524079073748212769106188207512280472757507}{23539714720628137979766006621476942808678112} a^{10} - \frac{19291859235316354813102896970132575645269457}{188317717765025103838128052971815542469424896} a^{9} + \frac{34002643809522364765318342420598608372321629}{94158858882512551919064026485907771234712448} a^{8} + \frac{4662742124850152086716326701216424950697561}{47079429441256275959532013242953885617356224} a^{7} - \frac{3505466293031734564287411166121304126246879}{23539714720628137979766006621476942808678112} a^{6} + \frac{83649677807615034082678953631713598582548771}{188317717765025103838128052971815542469424896} a^{5} + \frac{36570404806294809305334717644353432085021695}{94158858882512551919064026485907771234712448} a^{4} + \frac{641438275515029689879940240128778547397155}{2942464340078517247470750827684617851084764} a^{3} - \frac{604681571902191538856110196458876671044871}{2942464340078517247470750827684617851084764} a^{2} - \frac{1069366184715831282979291143036485229128269}{2942464340078517247470750827684617851084764} a - \frac{1922481513395949436735604919839016856717}{1471232170039258623735375413842308925542382}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 809031728069 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1119744 |
| The 267 conjugacy class representatives for t18n926 are not computed |
| Character table for t18n926 is not computed |
Intermediate fields
| 3.3.361.1, 6.2.58383808.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| 2.12.24.277 | $x^{12} + 8 x^{11} - 2 x^{10} + 8 x^{8} - 4 x^{6} + 8 x^{5} + 4 x^{4} + 8$ | $4$ | $3$ | $24$ | 12T143 | $[2, 2, 2, 5/2, 3, 3]^{6}$ | |
| $3$ | 3.9.9.4 | $x^{9} + 3 x^{6} + 9 x^{4} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ |
| 3.9.9.10 | $x^{9} + 6 x^{6} + 9 x^{4} + 27$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $19$ | 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |