Normalized defining polynomial
\( x^{18} - 2 x^{17} - 3 x^{16} - 10 x^{15} + 57 x^{14} - 14 x^{13} + 132 x^{12} - 736 x^{11} + 890 x^{10} - 1152 x^{9} + 3863 x^{8} - 8862 x^{7} + 12963 x^{6} - 13228 x^{5} + 16349 x^{4} - 10216 x^{3} - 11006 x^{2} + 2250 x - 11393 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(408062656723324082449547264=2^{18}\cdot 37^{6}\cdot 97^{2}\cdot 401^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} + \frac{1}{13} a^{15} + \frac{2}{13} a^{14} - \frac{2}{13} a^{13} + \frac{3}{13} a^{12} + \frac{4}{13} a^{11} - \frac{6}{13} a^{10} - \frac{5}{13} a^{9} + \frac{5}{13} a^{8} - \frac{3}{13} a^{7} + \frac{3}{13} a^{6} - \frac{6}{13} a^{5} + \frac{3}{13} a^{4} + \frac{3}{13} a^{3} - \frac{3}{13} a^{2} - \frac{1}{13} a - \frac{4}{13}$, $\frac{1}{5664686826923094436957029361970954057329} a^{17} - \frac{56012458377451666758279618835014821634}{5664686826923094436957029361970954057329} a^{16} + \frac{185763517287842911905232143810177286171}{5664686826923094436957029361970954057329} a^{15} - \frac{78591961338167259925698709565769159459}{5664686826923094436957029361970954057329} a^{14} + \frac{1572252776088189469191577752958634351989}{5664686826923094436957029361970954057329} a^{13} + \frac{1613784343867657002756368984435284096142}{5664686826923094436957029361970954057329} a^{12} - \frac{2143883264408622091038637381754329471162}{5664686826923094436957029361970954057329} a^{11} + \frac{2160753261862916828992550827430423143959}{5664686826923094436957029361970954057329} a^{10} + \frac{2030918067196795950008064821224771637088}{5664686826923094436957029361970954057329} a^{9} + \frac{467943100505969308686703698647444267630}{5664686826923094436957029361970954057329} a^{8} + \frac{1960008626003018218089508322816043149441}{5664686826923094436957029361970954057329} a^{7} - \frac{1846399281003108384270735027445455159522}{5664686826923094436957029361970954057329} a^{6} - \frac{1872245951784926628929031418073942814525}{5664686826923094436957029361970954057329} a^{5} - \frac{2721709929479422959239926065136992951063}{5664686826923094436957029361970954057329} a^{4} + \frac{190461277800223144272196392101692762896}{5664686826923094436957029361970954057329} a^{3} - \frac{2093130668780676253378673662227912362716}{5664686826923094436957029361970954057329} a^{2} + \frac{1664676730762401730764928049182562067055}{5664686826923094436957029361970954057329} a + \frac{192475777133490876547894138539632266936}{435745140532545725919771489382381081333}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 550415.604014 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 165 conjugacy class representatives for t18n885 are not computed |
| Character table for t18n885 is not computed |
Intermediate fields
| 3.3.148.1, 9.5.1299958592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.6.0.1 | $x^{6} - x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 401 | Data not computed | ||||||