Normalized defining polynomial
\( x^{18} - 2 x^{17} + 2 x^{16} - 3 x^{15} + 2 x^{14} - 4 x^{13} + 2 x^{12} - 10 x^{11} + 2 x^{10} - 3 x^{9} - 2 x^{8} - 10 x^{7} - 2 x^{6} - 4 x^{5} - 2 x^{4} - 3 x^{3} - 2 x^{2} - 2 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38000833928000000000=2^{12}\cdot 5^{9}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{15} a^{14} - \frac{4}{15} a^{13} + \frac{1}{15} a^{12} + \frac{1}{5} a^{11} - \frac{7}{15} a^{10} + \frac{4}{15} a^{9} + \frac{2}{15} a^{8} - \frac{7}{15} a^{7} - \frac{2}{15} a^{6} + \frac{4}{15} a^{5} + \frac{7}{15} a^{4} + \frac{1}{5} a^{3} - \frac{1}{15} a^{2} - \frac{4}{15} a - \frac{1}{15}$, $\frac{1}{15} a^{15} + \frac{7}{15} a^{12} + \frac{1}{3} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{15} a^{8} - \frac{4}{15} a^{6} - \frac{7}{15} a^{5} + \frac{1}{15} a^{4} - \frac{4}{15} a^{3} + \frac{7}{15} a^{2} - \frac{2}{15} a - \frac{4}{15}$, $\frac{1}{75} a^{16} + \frac{2}{75} a^{15} + \frac{1}{75} a^{14} + \frac{11}{25} a^{13} - \frac{1}{3} a^{12} - \frac{26}{75} a^{11} + \frac{23}{75} a^{10} - \frac{34}{75} a^{9} + \frac{34}{75} a^{8} - \frac{11}{75} a^{7} - \frac{2}{75} a^{6} + \frac{2}{25} a^{5} - \frac{2}{15} a^{4} + \frac{2}{75} a^{3} - \frac{4}{75} a^{2} - \frac{4}{25} a + \frac{12}{25}$, $\frac{1}{75} a^{17} + \frac{2}{75} a^{15} + \frac{1}{75} a^{14} + \frac{29}{75} a^{13} + \frac{29}{75} a^{12} + \frac{2}{15} a^{11} + \frac{2}{15} a^{10} - \frac{1}{25} a^{9} + \frac{16}{75} a^{8} + \frac{1}{15} a^{7} - \frac{1}{3} a^{6} - \frac{9}{25} a^{5} - \frac{11}{25} a^{4} + \frac{32}{75} a^{3} - \frac{14}{75} a^{2} + \frac{4}{15} a + \frac{13}{75}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 225.62524734 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\wr C_2$ (as 18T34):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $S_3\wr C_2$ |
| Character table for $S_3\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 6.2.82000.1 x2, 9.1.551368000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.2.82000.1, 6.2.1378420.1 |
| Degree 9 sibling: | 9.1.551368000.1 |
| Degree 12 siblings: | Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12 |
| Degree 18 siblings: | Deg 18, Deg 18 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |