Normalized defining polynomial
\( x^{18} - 8 x^{17} + 84 x^{16} - 424 x^{15} + 1921 x^{14} - 5644 x^{13} + 5853 x^{12} + 27036 x^{11} - 403385 x^{10} + 1487836 x^{9} - 7335706 x^{8} + 16115138 x^{7} - 59107418 x^{6} + 80135026 x^{5} - 271007145 x^{4} + 191575958 x^{3} - 735906741 x^{2} + 146184984 x - 949668003 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(372427769099646360301475650076672=2^{18}\cdot 37^{6}\cdot 97^{5}\cdot 401^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{1288881078055860175605950907342711853651814408244336780719903958106604199} a^{17} - \frac{33844149881428922500577827228910602705616823882450017358494159235907937}{1288881078055860175605950907342711853651814408244336780719903958106604199} a^{16} + \frac{49307760882578285465962018806020004002292650501023684160714375760978372}{143209008672873352845105656371412428183534934249370753413322662011844911} a^{15} + \frac{44168740489986501723420790408168458050449215583103592175036999510969079}{1288881078055860175605950907342711853651814408244336780719903958106604199} a^{14} + \frac{179294459807197173888795834688653919740107073264109209231653029687579546}{1288881078055860175605950907342711853651814408244336780719903958106604199} a^{13} + \frac{460936595239845472862255636836862273161889467971220747366896764942336654}{1288881078055860175605950907342711853651814408244336780719903958106604199} a^{12} - \frac{136971347619604327553139802509204662968428530164023914233560847872259927}{429627026018620058535316969114237284550604802748112260239967986035534733} a^{11} - \frac{31363725428673168199656439586263247557066237825167194447739143040545118}{143209008672873352845105656371412428183534934249370753413322662011844911} a^{10} - \frac{177698926682625098602911200369006639874458631266743835647180342701398156}{1288881078055860175605950907342711853651814408244336780719903958106604199} a^{9} + \frac{394458559274091936438661746994098605974902592368903545822454930876259825}{1288881078055860175605950907342711853651814408244336780719903958106604199} a^{8} + \frac{293055457799739922354865319210156529464314421363972775875030784324623176}{1288881078055860175605950907342711853651814408244336780719903958106604199} a^{7} - \frac{249018810095134482242220217505387880282992299194589090014972921630755767}{1288881078055860175605950907342711853651814408244336780719903958106604199} a^{6} - \frac{562186278537723252674650993196897094644381417702812439650218235737738014}{1288881078055860175605950907342711853651814408244336780719903958106604199} a^{5} + \frac{609511507743058235614034368523383382735604337444505153038932108302876803}{1288881078055860175605950907342711853651814408244336780719903958106604199} a^{4} + \frac{86600000147641540100786972840018701259663162005998352164912273540659567}{429627026018620058535316969114237284550604802748112260239967986035534733} a^{3} - \frac{476543265683678530155956973998038160033148191071723124561774323775197033}{1288881078055860175605950907342711853651814408244336780719903958106604199} a^{2} + \frac{136733608111673031796770799220905469063551989940307226178140269220152855}{429627026018620058535316969114237284550604802748112260239967986035534733} a - \frac{13946800987913892153223890626446996198670558643743098511903421785726354}{143209008672873352845105656371412428183534934249370753413322662011844911}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 371882939.831 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 130 conjugacy class representatives for t18n837 are not computed |
| Character table for t18n837 is not computed |
Intermediate fields
| 3.3.148.1, 9.5.1299958592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.6.3.1 | $x^{6} - 194 x^{4} + 9409 x^{2} - 22816825$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 401 | Data not computed | ||||||