Normalized defining polynomial
\( x^{18} - 7 x^{17} + 20 x^{16} - 30 x^{15} + 23 x^{14} - 10 x^{13} + 21 x^{12} - 58 x^{11} + 77 x^{10} - 47 x^{9} + 55 x^{8} + 25 x^{7} + 10 x^{6} + 84 x^{5} + 99 x^{4} + 56 x^{3} + 13 x^{2} + 10 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(361919253094499437975701=3^{15}\cdot 7^{5}\cdot 107^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{84} a^{15} - \frac{4}{21} a^{14} - \frac{1}{21} a^{13} - \frac{19}{84} a^{12} + \frac{1}{14} a^{11} + \frac{3}{7} a^{10} + \frac{1}{21} a^{9} + \frac{2}{21} a^{8} + \frac{29}{84} a^{7} + \frac{1}{7} a^{6} - \frac{1}{84} a^{5} - \frac{19}{84} a^{4} - \frac{5}{12} a^{3} + \frac{1}{21} a^{2} + \frac{17}{42} a + \frac{37}{84}$, $\frac{1}{84} a^{16} - \frac{2}{21} a^{14} + \frac{1}{84} a^{13} + \frac{19}{42} a^{12} - \frac{3}{7} a^{11} - \frac{2}{21} a^{10} - \frac{1}{7} a^{9} - \frac{11}{84} a^{8} - \frac{1}{3} a^{7} + \frac{23}{84} a^{6} - \frac{5}{12} a^{5} - \frac{1}{28} a^{4} + \frac{8}{21} a^{3} + \frac{1}{6} a^{2} - \frac{1}{12} a + \frac{1}{21}$, $\frac{1}{6029873697708} a^{17} + \frac{4394716363}{1507468424427} a^{16} - \frac{4299205955}{861410528244} a^{15} - \frac{2074051478431}{6029873697708} a^{14} - \frac{16924011319}{143568421374} a^{13} - \frac{384117458413}{6029873697708} a^{12} - \frac{709223221537}{3014936848854} a^{11} - \frac{321931948922}{1507468424427} a^{10} + \frac{2987037107581}{6029873697708} a^{9} - \frac{227603386054}{502489474809} a^{8} + \frac{82538463593}{3014936848854} a^{7} + \frac{113954900645}{287136842748} a^{6} + \frac{1100928515321}{3014936848854} a^{5} + \frac{2721008805959}{6029873697708} a^{4} + \frac{1960305367045}{6029873697708} a^{3} + \frac{1419981005125}{6029873697708} a^{2} - \frac{416601369425}{1004978949618} a + \frac{13254177775}{6029873697708}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33851.3368838 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 70 conjugacy class representatives for t18n396 are not computed |
| Character table for t18n396 is not computed |
Intermediate fields
| 3.3.321.1, 6.2.2163861.2, 9.3.43759761003.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
| 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.12.9.2 | $x^{12} - 9 x^{4} + 27$ | $4$ | $3$ | $9$ | $D_4 \times C_3$ | $[\ ]_{4}^{6}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 107 | Data not computed | ||||||