Normalized defining polynomial
\( x^{18} - 27 x^{15} - 3 x^{14} - 57 x^{13} + 19 x^{12} - 492 x^{11} + 714 x^{10} + 4068 x^{9} + 12999 x^{8} + 858 x^{7} + 6029 x^{6} - 33933 x^{5} + 77940 x^{4} - 18689 x^{3} + 19278 x^{2} - 12243 x + 1757 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(344925346014816475591906687296=2^{6}\cdot 3^{18}\cdot 7^{14}\cdot 29^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{188033159921269156020620600403478195959931501} a^{17} + \frac{15335500360196369686974354199831782108747458}{188033159921269156020620600403478195959931501} a^{16} + \frac{39979910922070335584743832971627073993570296}{188033159921269156020620600403478195959931501} a^{15} - \frac{72161329673207405966343243821356086559604925}{188033159921269156020620600403478195959931501} a^{14} + \frac{65563922869382930239276395420455224213912737}{188033159921269156020620600403478195959931501} a^{13} - \frac{55413895204525961951966483733499324267020186}{188033159921269156020620600403478195959931501} a^{12} - \frac{93691305632469685007641788569392413297959437}{188033159921269156020620600403478195959931501} a^{11} - \frac{27945133556360835433442689868275387312963018}{188033159921269156020620600403478195959931501} a^{10} + \frac{82062239255817253516383017321065074670444955}{188033159921269156020620600403478195959931501} a^{9} + \frac{43718808327456876412551660671109352939590883}{188033159921269156020620600403478195959931501} a^{8} + \frac{87236232092804079042874935801393689429176558}{188033159921269156020620600403478195959931501} a^{7} + \frac{5280119742471952405295666333700953282806802}{188033159921269156020620600403478195959931501} a^{6} + \frac{32551041993920159555151399272485867594199479}{188033159921269156020620600403478195959931501} a^{5} - \frac{45318137406037281294065419306505919644098792}{188033159921269156020620600403478195959931501} a^{4} - \frac{12747224546572697026213307721026586130722990}{188033159921269156020620600403478195959931501} a^{3} + \frac{23443219245449927758249881820173875623621483}{188033159921269156020620600403478195959931501} a^{2} - \frac{79287397736180734997549318243930574998032831}{188033159921269156020620600403478195959931501} a - \frac{58665586514206207716427821359688717546245218}{188033159921269156020620600403478195959931501}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47974020.3852 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n766 are not computed |
| Character table for t18n766 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.13632439166829.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.12.0.1 | $x^{12} - 26 x^{10} + 275 x^{8} - 1500 x^{6} + 4375 x^{4} - 6250 x^{2} + 7221$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.6.4.1 | $x^{6} + 232 x^{3} + 22707$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |