Normalized defining polynomial
\( x^{18} - 3 x^{16} + 36 x^{14} - 166 x^{12} + 150 x^{10} + 468 x^{8} + 301 x^{6} - 2259 x^{4} - 1692 x^{2} - 972 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33966586417892403297890598912=2^{18}\cdot 3^{9}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{12} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{12} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{12} a^{9} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} + \frac{1}{12} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{10} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{4} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{12} a^{11} - \frac{1}{6} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{36} a^{12} + \frac{1}{36} a^{10} - \frac{1}{6} a^{7} - \frac{5}{36} a^{6} + \frac{1}{6} a^{5} + \frac{7}{36} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{72} a^{13} + \frac{1}{72} a^{11} - \frac{1}{24} a^{9} + \frac{7}{72} a^{7} + \frac{13}{72} a^{5} - \frac{5}{24} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{288} a^{14} + \frac{1}{96} a^{12} + \frac{5}{288} a^{10} - \frac{11}{288} a^{8} - \frac{1}{6} a^{7} + \frac{5}{96} a^{6} + \frac{1}{6} a^{5} - \frac{79}{288} a^{4} - \frac{1}{6} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{288} a^{15} - \frac{1}{288} a^{13} + \frac{1}{288} a^{11} + \frac{1}{288} a^{9} - \frac{13}{288} a^{7} - \frac{1}{6} a^{6} - \frac{131}{288} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{872672256} a^{16} + \frac{155101}{109084032} a^{14} - \frac{953081}{218168064} a^{12} + \frac{9565703}{436336128} a^{10} + \frac{1768919}{54542016} a^{8} - \frac{33521495}{218168064} a^{6} - \frac{1}{2} a^{5} - \frac{106866797}{290890752} a^{4} - \frac{1}{2} a^{3} - \frac{435613}{1136292} a^{2} - \frac{10848623}{24240896}$, $\frac{1}{2618016768} a^{17} + \frac{177955}{109084032} a^{15} - \frac{570203}{218168064} a^{13} + \frac{11080759}{1309008384} a^{11} + \frac{2167823}{54542016} a^{9} - \frac{14456453}{218168064} a^{7} - \frac{1}{6} a^{6} + \frac{591463321}{2618016768} a^{5} - \frac{1}{3} a^{4} + \frac{195689}{568146} a^{3} + \frac{1}{3} a^{2} - \frac{1758287}{72722688} a - \frac{1}{2}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8602131.533624997 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), 3.1.5476.1, 3.1.4107.1, 6.2.2365632.1 x2, 6.2.3238550208.12, 6.2.3238550208.6, 9.1.4433575234752.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $37$ | 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |