Normalized defining polynomial
\( x^{18} - x^{17} + 2 x^{16} - 12 x^{15} + 7 x^{14} + 7 x^{13} + 60 x^{12} - 7 x^{11} - 10 x^{10} + \cdots + 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[2, 8]$ |
| |
| Discriminant: |
\(3266763321003968139264\)
\(\medspace = 2^{12}\cdot 3^{12}\cdot 107^{6}\)
|
| |
| Root discriminant: | \(15.68\) |
| |
| Galois root discriminant: | $2^{2/3}3^{3/4}107^{1/2}\approx 37.4299712608451$ | ||
| Ramified primes: |
\(2\), \(3\), \(107\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{9}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{9}a^{10}+\frac{1}{9}a^{8}-\frac{1}{9}a^{7}+\frac{1}{9}a^{6}-\frac{1}{9}a^{5}+\frac{1}{9}a^{4}+\frac{2}{9}a^{3}-\frac{2}{9}a^{2}+\frac{1}{3}a+\frac{1}{9}$, $\frac{1}{9}a^{11}+\frac{1}{9}a^{9}-\frac{1}{9}a^{8}+\frac{1}{9}a^{7}-\frac{1}{9}a^{6}+\frac{1}{9}a^{5}+\frac{2}{9}a^{4}-\frac{2}{9}a^{3}+\frac{1}{3}a^{2}+\frac{1}{9}a$, $\frac{1}{9}a^{12}-\frac{1}{9}a^{9}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{9}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{9}$, $\frac{1}{9}a^{13}+\frac{1}{9}a^{8}-\frac{1}{9}a^{7}+\frac{1}{9}a^{6}-\frac{1}{9}a^{5}-\frac{4}{9}a^{4}-\frac{1}{9}a^{3}-\frac{2}{9}a^{2}-\frac{4}{9}a-\frac{2}{9}$, $\frac{1}{27}a^{14}+\frac{1}{27}a^{13}+\frac{1}{27}a^{12}+\frac{1}{27}a^{11}+\frac{1}{27}a^{10}+\frac{1}{27}a^{9}+\frac{1}{9}a^{7}+\frac{1}{27}a^{5}-\frac{2}{27}a^{4}-\frac{8}{27}a^{3}+\frac{1}{27}a^{2}-\frac{5}{27}a-\frac{8}{27}$, $\frac{1}{27}a^{15}-\frac{1}{27}a^{9}+\frac{1}{9}a^{8}-\frac{1}{9}a^{7}+\frac{1}{27}a^{6}-\frac{1}{9}a^{5}-\frac{2}{9}a^{4}+\frac{1}{3}a^{3}-\frac{2}{9}a^{2}-\frac{1}{9}a+\frac{8}{27}$, $\frac{1}{81}a^{16}+\frac{1}{81}a^{14}-\frac{2}{81}a^{13}+\frac{4}{81}a^{12}+\frac{4}{81}a^{11}-\frac{1}{27}a^{10}+\frac{13}{81}a^{9}-\frac{4}{27}a^{8}+\frac{13}{81}a^{7}-\frac{4}{27}a^{6}-\frac{5}{81}a^{5}-\frac{32}{81}a^{4}+\frac{7}{81}a^{3}+\frac{37}{81}a^{2}+\frac{1}{9}a-\frac{26}{81}$, $\frac{1}{243}a^{17}+\frac{1}{243}a^{16}-\frac{2}{243}a^{15}+\frac{2}{243}a^{14}+\frac{5}{243}a^{13}+\frac{2}{243}a^{12}+\frac{13}{243}a^{11}-\frac{5}{243}a^{10}+\frac{25}{243}a^{9}-\frac{35}{243}a^{8}-\frac{35}{243}a^{7}+\frac{34}{243}a^{6}-\frac{106}{243}a^{5}-\frac{67}{243}a^{4}-\frac{70}{243}a^{3}-\frac{59}{243}a^{2}+\frac{40}{243}a-\frac{2}{243}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{32}{81}a^{17}-\frac{16}{81}a^{16}+\frac{32}{81}a^{15}-\frac{320}{81}a^{14}-\frac{8}{81}a^{13}+\frac{544}{81}a^{12}+\frac{1760}{81}a^{11}+\frac{620}{81}a^{10}-\frac{1120}{81}a^{9}-\frac{2272}{81}a^{8}-\frac{1402}{81}a^{7}+\frac{608}{81}a^{6}+\frac{832}{81}a^{5}+\frac{595}{81}a^{4}-\frac{320}{81}a^{3}+\frac{32}{81}a^{2}+\frac{98}{81}a+\frac{32}{81}$, $a$, $\frac{1}{243}a^{17}+\frac{52}{243}a^{16}-\frac{2}{243}a^{15}+\frac{44}{243}a^{14}-\frac{538}{243}a^{13}-\frac{181}{243}a^{12}+\frac{748}{243}a^{11}+\frac{3640}{243}a^{10}+\frac{2245}{243}a^{9}-\frac{971}{243}a^{8}-\frac{5798}{243}a^{7}-\frac{4061}{243}a^{6}-\frac{694}{243}a^{5}+\frac{2909}{243}a^{4}+\frac{1925}{243}a^{3}+\frac{415}{243}a^{2}-\frac{266}{243}a-\frac{95}{243}$, $\frac{49}{243}a^{17}-\frac{98}{243}a^{16}+\frac{199}{243}a^{15}-\frac{751}{243}a^{14}+\frac{1025}{243}a^{13}-\frac{598}{243}a^{12}+\frac{3019}{243}a^{11}-\frac{2666}{243}a^{10}+\frac{2365}{243}a^{9}-\frac{5162}{243}a^{8}+\frac{2719}{243}a^{7}-\frac{3428}{243}a^{6}+\frac{2966}{243}a^{5}-\frac{1360}{243}a^{4}+\frac{1940}{243}a^{3}-\frac{284}{243}a^{2}+\frac{556}{243}a-\frac{218}{243}$, $\frac{32}{81}a^{17}-\frac{1}{9}a^{16}+\frac{41}{81}a^{15}-\frac{334}{81}a^{14}-\frac{52}{81}a^{13}+\frac{389}{81}a^{12}+\frac{679}{27}a^{11}+\frac{1145}{81}a^{10}-\frac{146}{27}a^{9}-\frac{3013}{81}a^{8}-\frac{806}{27}a^{7}-\frac{529}{81}a^{6}+\frac{1190}{81}a^{5}+\frac{1421}{81}a^{4}+\frac{311}{81}a^{3}+\frac{8}{9}a^{2}-\frac{103}{81}a$, $\frac{1}{81}a^{17}+\frac{38}{81}a^{16}-\frac{38}{81}a^{15}+\frac{23}{27}a^{14}-\frac{151}{27}a^{13}+\frac{10}{3}a^{12}+\frac{344}{81}a^{11}+\frac{2173}{81}a^{10}-\frac{94}{81}a^{9}-\frac{380}{81}a^{8}-\frac{3289}{81}a^{7}-\frac{968}{81}a^{6}-\frac{31}{9}a^{5}+\frac{547}{27}a^{4}+\frac{232}{27}a^{3}+\frac{323}{81}a^{2}-\frac{128}{81}a-\frac{7}{81}$, $\frac{2}{243}a^{17}-\frac{52}{243}a^{16}+\frac{5}{243}a^{15}-\frac{77}{243}a^{14}+\frac{496}{243}a^{13}+\frac{247}{243}a^{12}-\frac{568}{243}a^{11}-\frac{3169}{243}a^{10}-\frac{2497}{243}a^{9}+\frac{173}{243}a^{8}+\frac{4007}{243}a^{7}+\frac{4100}{243}a^{6}+\frac{1489}{243}a^{5}-\frac{1187}{243}a^{4}-\frac{1490}{243}a^{3}-\frac{631}{243}a^{2}+\frac{242}{243}a+\frac{95}{243}$, $\frac{1}{9}a^{17}+\frac{23}{81}a^{16}-\frac{4}{9}a^{15}-\frac{25}{81}a^{14}-\frac{346}{81}a^{13}+\frac{512}{81}a^{12}+\frac{701}{81}a^{11}+18a^{10}-\frac{1351}{81}a^{9}-\frac{419}{27}a^{8}-\frac{2203}{81}a^{7}+\frac{313}{27}a^{6}+\frac{1016}{81}a^{5}+\frac{1088}{81}a^{4}-\frac{319}{81}a^{3}-\frac{340}{81}a^{2}-\frac{13}{27}a+\frac{56}{81}$, $\frac{70}{243}a^{17}-\frac{119}{243}a^{16}+\frac{220}{243}a^{15}-\frac{949}{243}a^{14}+\frac{1097}{243}a^{13}-\frac{166}{243}a^{12}+\frac{3817}{243}a^{11}-\frac{2843}{243}a^{10}+\frac{1570}{243}a^{9}-\frac{5771}{243}a^{8}+\frac{2437}{243}a^{7}-\frac{2876}{243}a^{6}+\frac{3398}{243}a^{5}-\frac{1486}{243}a^{4}+\frac{1625}{243}a^{3}-\frac{89}{243}a^{2}+\frac{361}{243}a-\frac{266}{243}$
|
| |
| Regulator: | \( 4440.92692884 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{8}\cdot 4440.92692884 \cdot 1}{2\cdot\sqrt{3266763321003968139264}}\cr\approx \mathstrut & 0.377471124154 \end{aligned}\]
Galois group
$C_6^2:D_6$ (as 18T154):
| A solvable group of order 432 |
| The 20 conjugacy class representatives for $C_6^2:D_6$ |
| Character table for $C_6^2:D_6$ |
Intermediate fields
| 3.3.321.1, 6.2.927369.1, 9.3.6350622912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 18.2.1333975179684221380409462784.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.6.0.1}{6} }$ | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{6}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{6}$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.3.6a1.1 | $x^{9} + 3 x^{7} + 3 x^{6} + 3 x^{5} + 6 x^{4} + 4 x^{3} + 3 x^{2} + 3 x + 3$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
| 2.3.3.6a1.1 | $x^{9} + 3 x^{7} + 3 x^{6} + 3 x^{5} + 6 x^{4} + 4 x^{3} + 3 x^{2} + 3 x + 3$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ | |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.3.4.9a1.2 | $x^{12} + 8 x^{10} + 4 x^{9} + 24 x^{8} + 24 x^{7} + 38 x^{6} + 48 x^{5} + 40 x^{4} + 36 x^{3} + 24 x^{2} + 8 x + 4$ | $4$ | $3$ | $9$ | $D_4 \times C_3$ | $$[\ ]_{4}^{6}$$ | |
|
\(107\)
| $\Q_{107}$ | $x + 105$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{107}$ | $x + 105$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 107.2.1.0a1.1 | $x^{2} + 103 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 107.2.1.0a1.1 | $x^{2} + 103 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 107.2.2.2a1.2 | $x^{4} + 206 x^{3} + 10613 x^{2} + 412 x + 111$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 107.2.2.2a1.2 | $x^{4} + 206 x^{3} + 10613 x^{2} + 412 x + 111$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 107.2.2.2a1.2 | $x^{4} + 206 x^{3} + 10613 x^{2} + 412 x + 111$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |