Normalized defining polynomial
\( x^{18} - 2 x^{17} + 8 x^{16} - 6 x^{15} + 98 x^{14} - 59 x^{13} + 242 x^{12} - 580 x^{11} + 102 x^{10} - 1720 x^{9} + 491 x^{8} - 812 x^{7} + 1862 x^{6} + 1762 x^{5} - 480 x^{4} + 1105 x^{3} - 2392 x^{2} + 548 x - 316 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3159801510141606532989440000=2^{12}\cdot 5^{4}\cdot 29\cdot 37^{8}\cdot 59^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 37, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{59} a^{15} - \frac{25}{59} a^{14} - \frac{26}{59} a^{13} + \frac{22}{59} a^{12} + \frac{15}{59} a^{11} - \frac{25}{59} a^{10} + \frac{21}{59} a^{9} + \frac{21}{59} a^{8} - \frac{25}{59} a^{7} - \frac{7}{59} a^{6} + \frac{9}{59} a^{5} - \frac{13}{59} a^{4} - \frac{17}{59} a^{3} + \frac{16}{59} a^{2} + \frac{21}{59} a + \frac{29}{59}$, $\frac{1}{118} a^{16} - \frac{1}{118} a^{15} + \frac{23}{118} a^{14} + \frac{47}{118} a^{13} - \frac{47}{118} a^{12} + \frac{20}{59} a^{11} - \frac{24}{59} a^{10} - \frac{3}{59} a^{9} - \frac{26}{59} a^{8} + \frac{21}{59} a^{7} - \frac{41}{118} a^{6} - \frac{33}{118} a^{5} + \frac{25}{118} a^{4} + \frac{21}{118} a^{3} + \frac{51}{118} a^{2} + \frac{1}{59} a - \frac{6}{59}$, $\frac{1}{204327508986826839625191592094} a^{17} + \frac{157234789466356552649969749}{204327508986826839625191592094} a^{16} - \frac{1011531496351811894705086227}{204327508986826839625191592094} a^{15} + \frac{7484176385078792676950733431}{204327508986826839625191592094} a^{14} - \frac{11463020451281349118414184645}{204327508986826839625191592094} a^{13} + \frac{41223085065427995022209920294}{102163754493413419812595796047} a^{12} + \frac{26904070719109292401649550143}{102163754493413419812595796047} a^{11} + \frac{4089805300049795885466913280}{102163754493413419812595796047} a^{10} + \frac{29820240398564657645344854367}{102163754493413419812595796047} a^{9} - \frac{12318650604686224405870486813}{102163754493413419812595796047} a^{8} + \frac{13891402435571585378656546201}{204327508986826839625191592094} a^{7} - \frac{12534236027270240205947273699}{204327508986826839625191592094} a^{6} - \frac{2298315145464785818844066453}{204327508986826839625191592094} a^{5} - \frac{93979516578865308043109322627}{204327508986826839625191592094} a^{4} - \frac{27064186114175364360473459183}{204327508986826839625191592094} a^{3} + \frac{189896994405120586535625712}{1731589059210396945976199933} a^{2} - \frac{13729323604129551332753742029}{102163754493413419812595796047} a + \frac{31691484461665844293745275537}{102163754493413419812595796047}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12211336.5687 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n772 are not computed |
| Character table for t18n772 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.10438327105600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37 | Data not computed | ||||||
| $59$ | 59.6.4.1 | $x^{6} + 295 x^{3} + 27848$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 59.12.0.1 | $x^{12} - x + 10$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |