Normalized defining polynomial
\( x^{18} - 6 x^{17} + 7 x^{16} + 36 x^{15} - 150 x^{14} + 284 x^{13} - 354 x^{12} + 348 x^{11} - 346 x^{10} + 400 x^{9} - 498 x^{8} + 548 x^{7} - 456 x^{6} + 312 x^{5} - 180 x^{4} + 76 x^{3} - 21 x^{2} + 2 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3057647616000000000000000=2^{37}\cdot 3^{6}\cdot 5^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{6} a^{12} - \frac{1}{3} a^{9} - \frac{1}{2} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{10} - \frac{1}{3} a^{8} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{11} - \frac{1}{3} a^{9} + \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{18} a^{16} + \frac{1}{18} a^{15} + \frac{1}{18} a^{14} - \frac{1}{18} a^{12} + \frac{1}{18} a^{11} - \frac{1}{18} a^{10} - \frac{1}{9} a^{9} + \frac{1}{18} a^{8} + \frac{7}{18} a^{7} - \frac{1}{6} a^{6} - \frac{4}{9} a^{5} - \frac{5}{18} a^{4} + \frac{1}{6} a^{3} - \frac{1}{18} a^{2} - \frac{1}{3} a - \frac{4}{9}$, $\frac{1}{37132380774} a^{17} - \frac{663396931}{37132380774} a^{16} + \frac{710686937}{37132380774} a^{15} + \frac{35818939}{807225669} a^{14} - \frac{1168761704}{18566190387} a^{13} + \frac{17178887}{229212227} a^{12} - \frac{58076281}{12377460258} a^{11} - \frac{281306161}{2062910043} a^{10} - \frac{9230401658}{18566190387} a^{9} + \frac{6373436977}{18566190387} a^{8} - \frac{8088476429}{37132380774} a^{7} + \frac{1213410122}{18566190387} a^{6} + \frac{9122397157}{18566190387} a^{5} - \frac{144011207}{314681193} a^{4} - \frac{1104969349}{37132380774} a^{3} + \frac{6108483442}{18566190387} a^{2} - \frac{3325159007}{37132380774} a - \frac{12675243611}{37132380774}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 165711.7100392055 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3^2$ (as 18T29):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $C_2\times S_3^2$ |
| Character table for $C_2\times S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), 3.1.200.1, 3.1.300.1, 6.2.57600000.1, 6.2.6400000.1, 9.1.3456000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.5 | $x^{6} + 6$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.12.26.99 | $x^{12} + 4 x^{11} + 6 x^{10} + 6 x^{8} + 2 x^{6} + 4 x^{5} + 4 x^{4} + 4 x^{3} + 4 x^{2} + 6$ | $12$ | $1$ | $26$ | $S_3 \times C_2^2$ | $[2, 3]_{3}^{2}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.6.5.2 | $x^{6} + 10$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ |