Normalized defining polynomial
\( x^{18} + 2 x^{16} - 3 x^{15} - 4 x^{14} - 4 x^{13} - 6 x^{12} - 4 x^{10} - 17 x^{9} - 8 x^{8} - 48 x^{6} - 64 x^{5} - 128 x^{4} - 192 x^{3} + 256 x^{2} + 512 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2886523956915912859821961=7^{12}\cdot 53^{6}\cdot 97^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 53, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{3}{8} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{11} - \frac{3}{16} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{3}{8} a^{7} + \frac{1}{4} a^{5} - \frac{1}{16} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{14} - \frac{1}{16} a^{12} - \frac{3}{32} a^{11} + \frac{1}{8} a^{10} + \frac{1}{4} a^{9} + \frac{5}{16} a^{8} - \frac{3}{8} a^{6} + \frac{15}{32} a^{5} + \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{15} - \frac{1}{32} a^{13} - \frac{3}{64} a^{12} + \frac{1}{16} a^{11} + \frac{1}{8} a^{10} - \frac{11}{32} a^{9} - \frac{1}{2} a^{8} + \frac{5}{16} a^{7} - \frac{17}{64} a^{6} - \frac{3}{8} a^{5} + \frac{1}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{435584} a^{16} + \frac{537}{217792} a^{15} + \frac{1631}{217792} a^{14} + \frac{2953}{435584} a^{13} + \frac{10311}{217792} a^{12} + \frac{1839}{27224} a^{11} - \frac{3051}{217792} a^{10} - \frac{46883}{108896} a^{9} - \frac{29131}{108896} a^{8} - \frac{113033}{435584} a^{7} + \frac{4811}{217792} a^{6} + \frac{997}{108896} a^{5} - \frac{16607}{54448} a^{4} + \frac{2503}{27224} a^{3} + \frac{3121}{13612} a^{2} - \frac{1255}{6806} a + \frac{2}{3403}$, $\frac{1}{871168} a^{17} - \frac{1}{128} a^{15} + \frac{11461}{871168} a^{14} + \frac{1771}{217792} a^{13} - \frac{3179}{217792} a^{12} + \frac{54241}{435584} a^{11} - \frac{1839}{27224} a^{10} + \frac{67707}{217792} a^{9} - \frac{360001}{871168} a^{8} + \frac{12115}{108896} a^{7} + \frac{22303}{108896} a^{6} - \frac{10919}{108896} a^{5} + \frac{2301}{27224} a^{4} - \frac{26}{3403} a^{3} + \frac{447}{13612} a^{2} + \frac{143}{6806} a - \frac{1074}{3403}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35079.4331442 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4608 |
| The 48 conjugacy class representatives for t18n463 |
| Character table for t18n463 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.2597.1, 9.9.17515230173.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $53$ | 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 53.6.3.1 | $x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 53.6.3.1 | $x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |