Normalized defining polynomial
\( x^{18} - 33 x^{15} - 234 x^{14} + 468 x^{13} + 177 x^{12} + 4662 x^{11} + 13086 x^{10} - 72977 x^{9} + 39096 x^{8} - 134568 x^{7} - 227046 x^{6} + 3146436 x^{5} - 3175020 x^{4} - 4732980 x^{3} + 5449824 x^{2} + 3425472 x - 3710192 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28533206322804731469169670894850048=2^{12}\cdot 3^{45}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{6} a^{3} - \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{2} a^{7} - \frac{1}{6} a^{4} - \frac{1}{3} a$, $\frac{1}{18} a^{14} + \frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{1}{18} a^{11} - \frac{1}{18} a^{10} - \frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{18} a^{5} - \frac{1}{18} a^{4} - \frac{1}{18} a^{3} + \frac{2}{9} a^{2} + \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{36} a^{15} + \frac{1}{36} a^{12} - \frac{1}{6} a^{10} + \frac{1}{36} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{7}{36} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{18} a^{3} - \frac{1}{3} a - \frac{4}{9}$, $\frac{1}{612} a^{16} - \frac{1}{204} a^{15} - \frac{1}{102} a^{14} + \frac{13}{612} a^{13} + \frac{7}{204} a^{12} + \frac{1}{102} a^{11} - \frac{71}{612} a^{10} + \frac{31}{204} a^{9} - \frac{1}{2} a^{8} - \frac{133}{612} a^{7} - \frac{95}{204} a^{6} + \frac{14}{51} a^{5} - \frac{41}{306} a^{4} - \frac{16}{51} a^{3} - \frac{8}{51} a^{2} + \frac{50}{153} a - \frac{1}{51}$, $\frac{1}{3583761781356286859893054864420126054292825448} a^{17} + \frac{296102391260028940770441538373265222623791}{447970222669535857486631858052515756786603181} a^{16} + \frac{12442240300752105310125775681599143406579469}{895940445339071714973263716105031513573206362} a^{15} - \frac{62477150426043943530434542229891742709920593}{3583761781356286859893054864420126054292825448} a^{14} + \frac{99393211186592702275888514951517684022504075}{1791880890678143429946527432210063027146412724} a^{13} - \frac{4769252631434543710079174094434669705436877}{447970222669535857486631858052515756786603181} a^{12} - \frac{237343700883511503968870986510777429528443803}{3583761781356286859893054864420126054292825448} a^{11} + \frac{11545343808249001212096210789454171624381477}{1791880890678143429946527432210063027146412724} a^{10} - \frac{278709720220269009210023507369474178989656225}{1791880890678143429946527432210063027146412724} a^{9} - \frac{434149300829421375201041849747373055677403921}{3583761781356286859893054864420126054292825448} a^{8} + \frac{5265523493942544942523769472493705593155656}{26351189568796226910978344591324456281564893} a^{7} - \frac{345700788490291454761959846603116278861950571}{895940445339071714973263716105031513573206362} a^{6} + \frac{1344926931306949252670006368509456597238211}{105404758275184907643913378365297825126259572} a^{5} + \frac{194716949859361557818206270460544674720022281}{447970222669535857486631858052515756786603181} a^{4} + \frac{88268467758787286108002826149157083970615677}{447970222669535857486631858052515756786603181} a^{3} + \frac{404355699724741097975673559440685995985333841}{895940445339071714973263716105031513573206362} a^{2} - \frac{206145576259828096640509863669974218902668044}{447970222669535857486631858052515756786603181} a + \frac{99891198550851641305603450122406815852213733}{447970222669535857486631858052515756786603181}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26942088406.02308 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{33}) \), 3.1.243.1, 6.2.235782657.1, 9.1.2008387814976.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |