Normalized defining polynomial
\( x^{18} + 3 x^{16} - 9 x^{14} - 43 x^{12} - 120 x^{10} - 252 x^{8} - 104 x^{6} - 432 x^{4} - 240 x^{2} - 48 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2807929681968365568000000=2^{34}\cdot 3^{21}\cdot 5^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{40} a^{12} + \frac{9}{40} a^{10} + \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{9}{20} a^{4} - \frac{1}{10}$, $\frac{1}{80} a^{13} + \frac{9}{80} a^{11} - \frac{1}{4} a^{10} - \frac{3}{16} a^{9} - \frac{1}{4} a^{8} - \frac{1}{16} a^{7} - \frac{1}{4} a^{6} + \frac{1}{40} a^{5} - \frac{1}{4} a^{4} + \frac{9}{20} a$, $\frac{1}{80} a^{14} - \frac{1}{80} a^{12} - \frac{1}{4} a^{11} + \frac{3}{16} a^{10} - \frac{1}{4} a^{9} - \frac{3}{16} a^{8} - \frac{1}{4} a^{7} + \frac{3}{20} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{9}{20} a^{2} - \frac{1}{2}$, $\frac{1}{80} a^{15} - \frac{1}{5} a^{11} - \frac{1}{4} a^{10} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{7}{80} a^{7} - \frac{1}{4} a^{6} - \frac{9}{40} a^{5} - \frac{1}{4} a^{4} + \frac{9}{20} a^{3} - \frac{1}{20} a$, $\frac{1}{27687200} a^{16} + \frac{107247}{27687200} a^{14} + \frac{334379}{27687200} a^{12} - \frac{3780907}{27687200} a^{10} - \frac{77413}{1730450} a^{8} + \frac{201503}{865225} a^{6} - \frac{1}{2} a^{5} + \frac{654923}{1384360} a^{4} + \frac{1086571}{3460900} a^{2} - \frac{1}{2} a - \frac{833533}{1730450}$, $\frac{1}{27687200} a^{17} + \frac{107247}{27687200} a^{15} - \frac{11711}{27687200} a^{13} - \frac{6895717}{27687200} a^{11} - \frac{1}{4} a^{10} + \frac{1976371}{13843600} a^{9} - \frac{1}{4} a^{8} - \frac{2832527}{13843600} a^{7} - \frac{1}{4} a^{6} - \frac{35933}{692180} a^{5} + \frac{1}{4} a^{4} + \frac{1086571}{3460900} a^{3} - \frac{1}{2} a^{2} + \frac{236429}{3460900} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 427082.8993575692 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3^2$ (as 18T29):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $C_2\times S_3^2$ |
| Character table for $C_2\times S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), 3.1.108.1, 3.1.1080.1, 6.2.55987200.1, 6.2.559872.1, 9.1.60466176000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.3 | $x^{6} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.12.26.45 | $x^{12} + 4 x^{11} - 2 x^{8} + 2 x^{6} + 4 x^{5} - 2 x^{4} + 4 x^{3} - 2$ | $12$ | $1$ | $26$ | $S_3 \times C_2^2$ | $[2, 3]_{3}^{2}$ | |
| $3$ | 3.6.7.2 | $x^{6} + 3 x^{2} + 6$ | $6$ | $1$ | $7$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.12.14.6 | $x^{12} + 3 x^{11} + 3 x^{10} - 6 x^{9} + 3 x^{8} + 9 x^{7} + 9 x^{4} + 9 x^{3} + 9$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |