Normalized defining polynomial
\( x^{18} - 3 x^{17} + 66 x^{16} - 213 x^{15} + 1892 x^{14} - 6691 x^{13} + 23960 x^{12} - 91827 x^{11} + 121105 x^{10} - 350894 x^{9} + 426906 x^{8} + 2317649 x^{7} - 2369746 x^{6} + 3256845 x^{5} - 18491746 x^{4} + 6297689 x^{3} + 49580003 x^{2} - 4971898 x - 90710077 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27743318282861835289866224169592661=101^{5}\cdot 1129^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $101, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{17} - \frac{1735979449811432347459765843819028915997670312507537729220186786279583604}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{16} - \frac{357650842940207785269925823241507504505649370179993648787397707161996891}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{15} + \frac{16817334078900216770016634935711924937917264702105822929034982361249931}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{14} + \frac{694211305808770365021207031883474334627160605935858522521826620522093926}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{13} - \frac{1516513384401741813387327881386225204939610982187112611832863217965076309}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{12} + \frac{513469462178203048090660035426633259517738593328393779913302724612404844}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{11} + \frac{251137847284579769084798396190037852504620397743330131468473854750388518}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{10} + \frac{1585882296019861701932555891142152219325122242768244138339089515137404998}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{9} + \frac{609584582870652358510395239937198114502606042043113920509541274979973213}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{8} - \frac{1235441902442468639416707766646403851857474277555370215732911434365246992}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{7} + \frac{385050906940066801446429710431506168904470267168934304243193796546449427}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{6} - \frac{306621638120121950634981218352739910478096404690805450751890957283756749}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{5} - \frac{1986935903395154650965864882023937939065778039950013516935660835479558623}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{4} + \frac{1631854701520062869067514514776112216065680968568033013309636507046198278}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{3} + \frac{1436909031006336098377107577947736870743433845590379626265065081945922256}{4165859158108727055154041469987836484448489587817052910700609188800473137} a^{2} + \frac{540382905465841445739228770670111087562283782051360482606989531453509073}{4165859158108727055154041469987836484448489587817052910700609188800473137} a + \frac{2027460919943091545592664037550924444559776450340920391717390749396138295}{4165859158108727055154041469987836484448489587817052910700609188800473137}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 448296606.617 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 9216 |
| The 88 conjugacy class representatives for t18n548 are not computed |
| Character table for t18n548 is not computed |
Intermediate fields
| 3.3.1129.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 101 | Data not computed | ||||||
| 1129 | Data not computed | ||||||