Normalized defining polynomial
\( x^{18} - 3 x^{17} + 21 x^{16} - 198 x^{15} + 180 x^{14} - 1092 x^{13} + 23611 x^{12} + 97293 x^{11} + 593271 x^{10} + 1360730 x^{9} + 2502192 x^{8} - 1915326 x^{7} - 31691898 x^{6} - 54019896 x^{5} - 111814770 x^{4} + 209720586 x^{3} + 565097442 x^{2} + 377540976 x - 1059046848 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2690636948830640160368640000000000000000=2^{26}\cdot 3^{18}\cdot 5^{16}\cdot 7^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $155.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10}$, $\frac{1}{28} a^{14} + \frac{5}{28} a^{13} - \frac{5}{28} a^{12} + \frac{3}{28} a^{11} + \frac{13}{28} a^{10} - \frac{5}{28} a^{9} + \frac{3}{14} a^{8} - \frac{5}{14} a^{7} - \frac{1}{7} a^{6} + \frac{1}{7} a^{5} + \frac{3}{14} a^{4} - \frac{1}{14} a^{3} - \frac{5}{14} a^{2} - \frac{1}{14} a + \frac{1}{7}$, $\frac{1}{28} a^{15} - \frac{1}{14} a^{13} - \frac{1}{14} a^{11} - \frac{1}{2} a^{10} + \frac{3}{28} a^{9} - \frac{3}{7} a^{8} - \frac{5}{14} a^{7} - \frac{1}{7} a^{6} - \frac{1}{2} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{2} - \frac{1}{2} a + \frac{2}{7}$, $\frac{1}{392} a^{16} - \frac{3}{196} a^{15} - \frac{1}{56} a^{14} - \frac{97}{392} a^{13} - \frac{89}{392} a^{12} + \frac{11}{392} a^{11} - \frac{31}{196} a^{10} - \frac{145}{392} a^{9} - \frac{41}{98} a^{8} + \frac{53}{196} a^{7} + \frac{15}{196} a^{6} - \frac{10}{49} a^{5} + \frac{81}{196} a^{4} + \frac{57}{196} a^{3} - \frac{1}{7} a^{2} + \frac{9}{196} a + \frac{2}{49}$, $\frac{1}{293021143949483108799948688900272522093748923635866698439279852928136} a^{17} - \frac{1046893286173235868792230997223034035084798475717912967960119775}{12209214331228462866664528704178021753906205151494445768303327205339} a^{16} - \frac{541381392583803831454848957739631939318834552145213546028816588757}{97673714649827702933316229633424174031249641211955566146426617642712} a^{15} + \frac{1057278673319594055787790614846853263050376709565189736202068644135}{97673714649827702933316229633424174031249641211955566146426617642712} a^{14} - \frac{2880021246012361032727447418628417298576663652373278770555287534791}{13953387807118243276188032804774882004464234458850795163775231091816} a^{13} - \frac{1177181802048827691431766144203307547301734795036881332595876943439}{13953387807118243276188032804774882004464234458850795163775231091816} a^{12} + \frac{42950570965928296743478923229578202847234131055533726008972451352}{747502918238477318367216043112940107382012560295578312345101665633} a^{11} + \frac{658465941909385780856628655902795830368570713300783092770030684181}{1993341115302606182312576114967840286352033494121542166253604441688} a^{10} + \frac{2791231321237942621456745582868264551693308669282543729643472186709}{6976693903559121638094016402387441002232117229425397581887615545908} a^{9} + \frac{9350749039050752921731870259557034353825616960131527680266885081645}{20930081710677364914282049207162323006696351688276192745662846637724} a^{8} - \frac{249590773716451385722751839969634873924964898134505663644335985585}{996670557651303091156288057483920143176016747060771083126802220844} a^{7} + \frac{1545296024059168371491095637194137679742854010904585121286888423369}{3488346951779560819047008201193720501116058614712698790943807772954} a^{6} + \frac{3002523176683564302850384960994526557966380954344052269730777931353}{6976693903559121638094016402387441002232117229425397581887615545908} a^{5} - \frac{671617141204764482692008081936736493622547396196657294285091155969}{6976693903559121638094016402387441002232117229425397581887615545908} a^{4} - \frac{5862188696231604149802223851211483278087304340822130203704778344171}{24418428662456925733329057408356043507812410302988891536606654410678} a^{3} - \frac{9762295488463224509309800434533443988441588127801461779056289153361}{48836857324913851466658114816712087015624820605977783073213308821356} a^{2} + \frac{4576691203305522128206719575402662991997216899203815965567072284465}{24418428662456925733329057408356043507812410302988891536606654410678} a + \frac{1126536566507562508937779773099242380292497017809908542532945399396}{12209214331228462866664528704178021753906205151494445768303327205339}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 175948770443000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_{18}$ (as 18T982):
| A non-solvable group of order 3201186852864000 |
| The 200 conjugacy class representatives for $A_{18}$ are not computed |
| Character table for $A_{18}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.13.0.1}{13} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.13.0.1}{13} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.8.22.95 | $x^{8} + 184 x^{4} + 400$ | $8$ | $1$ | $22$ | $D_4\times C_2$ | $[2, 3, 7/2]^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.8.10 | $x^{6} + 6 x^{5} + 36$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| 3.8.7.2 | $x^{8} - 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.10.10.7 | $x^{10} + 10 x^{8} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 12$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.10.9.2 | $x^{10} + 14$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |