Normalized defining polynomial
\( x^{18} - 6 x^{17} + 17 x^{16} - 41 x^{15} + 171 x^{14} - 637 x^{13} + 1498 x^{12} - 2355 x^{11} + 2713 x^{10} - 2370 x^{9} + 577 x^{8} + 3413 x^{7} - 7721 x^{6} + 8155 x^{5} - 4546 x^{4} + 1387 x^{3} - 1088 x^{2} + 1254 x - 638 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2631248629891740460251353088=2^{12}\cdot 3^{9}\cdot 7^{12}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{12} a^{14} - \frac{1}{6} a^{13} - \frac{1}{4} a^{12} - \frac{1}{12} a^{11} - \frac{1}{3} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{5}{12} a^{6} - \frac{1}{12} a^{5} + \frac{1}{12} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{96} a^{15} + \frac{1}{32} a^{14} + \frac{23}{96} a^{13} + \frac{7}{48} a^{12} + \frac{9}{32} a^{11} - \frac{47}{96} a^{10} + \frac{5}{16} a^{9} - \frac{15}{32} a^{8} + \frac{5}{96} a^{7} - \frac{3}{16} a^{6} - \frac{5}{96} a^{5} + \frac{37}{96} a^{4} - \frac{17}{96} a^{3} - \frac{5}{48} a^{2} + \frac{1}{8} a - \frac{23}{48}$, $\frac{1}{576} a^{16} + \frac{1}{288} a^{15} + \frac{5}{144} a^{14} - \frac{35}{192} a^{13} + \frac{61}{576} a^{12} + \frac{59}{288} a^{11} + \frac{173}{576} a^{10} - \frac{73}{192} a^{9} + \frac{121}{288} a^{8} + \frac{73}{576} a^{7} + \frac{157}{576} a^{6} + \frac{23}{96} a^{5} + \frac{13}{32} a^{4} + \frac{151}{576} a^{3} - \frac{85}{288} a^{2} - \frac{77}{288} a + \frac{71}{288}$, $\frac{1}{381628778994508808884032} a^{17} + \frac{214900374621102930941}{381628778994508808884032} a^{16} + \frac{26287558365226204303}{47703597374313601110504} a^{15} - \frac{2899737071742710659201}{127209592998169602961344} a^{14} - \frac{19463082997453325823269}{95407194748627202221008} a^{13} - \frac{89232338773801375766999}{381628778994508808884032} a^{12} - \frac{75506720397598806334471}{381628778994508808884032} a^{11} + \frac{2845237929008579730785}{21201598833028267160224} a^{10} - \frac{121562349831660961801027}{381628778994508808884032} a^{9} + \frac{52084387695201173331001}{381628778994508808884032} a^{8} + \frac{80634452330937665573867}{190814389497254404442016} a^{7} - \frac{6352506475358726987403}{42403197666056534320448} a^{6} - \frac{6679520475076669078493}{63604796499084801480672} a^{5} - \frac{26624588542171522922069}{381628778994508808884032} a^{4} - \frac{105302152171390623953675}{381628778994508808884032} a^{3} + \frac{46986306875250069037307}{95407194748627202221008} a^{2} - \frac{8577380107520144328385}{47703597374313601110504} a + \frac{22247435218332142648681}{63604796499084801480672}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2896407.5795219596 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{33}) \), 3.1.44.1, 3.1.588.1, 6.2.574992.1, 6.2.345138948.1 x2, 6.2.1380555792.2, 9.1.270588935232.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |