Normalized defining polynomial
\( x^{18} - 12 x^{16} - 4 x^{15} - 42 x^{14} - 108 x^{13} + 474 x^{12} + 96 x^{11} - 4152 x^{10} - 14208 x^{9} - 24000 x^{8} - 21024 x^{7} - 15584 x^{6} - 14592 x^{5} + 3840 x^{4} - 3072 x^{3} + 9216 x^{2} + 4096 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2528737148214063530774743744512=2^{28}\cdot 3^{24}\cdot 13\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{11} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{12} - \frac{1}{16} a^{8} + \frac{1}{8} a^{7} + \frac{1}{16} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{64} a^{13} - \frac{1}{32} a^{9} + \frac{1}{16} a^{8} + \frac{1}{32} a^{7} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{3}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{128} a^{14} - \frac{1}{32} a^{11} - \frac{1}{64} a^{10} + \frac{1}{32} a^{9} + \frac{1}{64} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{1}{4} a^{5} - \frac{3}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{256} a^{15} - \frac{1}{64} a^{12} + \frac{3}{128} a^{11} + \frac{1}{64} a^{10} + \frac{1}{128} a^{9} + \frac{1}{16} a^{8} - \frac{1}{4} a^{6} + \frac{3}{8} a^{5} + \frac{1}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{14848} a^{16} - \frac{13}{7424} a^{15} - \frac{3}{3712} a^{14} + \frac{5}{3712} a^{13} + \frac{63}{7424} a^{12} - \frac{25}{1856} a^{11} + \frac{153}{7424} a^{10} - \frac{65}{3712} a^{9} - \frac{127}{1856} a^{8} + \frac{3}{928} a^{7} + \frac{21}{116} a^{6} - \frac{27}{464} a^{5} - \frac{135}{464} a^{4} + \frac{39}{232} a^{3} + \frac{2}{29} a^{2} + \frac{21}{58} a - \frac{12}{29}$, $\frac{1}{980381311035418720573813760} a^{17} + \frac{70172389033653594081}{8451563026167402763567360} a^{16} + \frac{172820194955559412244013}{122547663879427340071726720} a^{15} - \frac{176750037950840317363361}{49019065551770936028690688} a^{14} + \frac{3048310610157272083011099}{490190655517709360286906880} a^{13} + \frac{212843637369993253600907}{49019065551770936028690688} a^{12} + \frac{11792839577613616055886897}{490190655517709360286906880} a^{11} + \frac{47724905625454853837227}{24509532775885468014345344} a^{10} - \frac{3485208226395379766392747}{61273831939713670035863360} a^{9} - \frac{606921952638824148703583}{6127383193971367003586336} a^{8} - \frac{473632760659094754539983}{6127383193971367003586336} a^{7} + \frac{382929850362903363501373}{30636915969856835017931680} a^{6} + \frac{6996921595541041864457261}{30636915969856835017931680} a^{5} + \frac{455172251914730974403557}{1531845798492841750896584} a^{4} + \frac{185204886877699698791965}{1531845798492841750896584} a^{3} - \frac{203794244471050492634621}{1914807248116052188620730} a^{2} - \frac{578059795064809924467}{66027836141932834090370} a + \frac{56554217272169767250891}{957403624058026094310365}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 847495141.845 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 55296 |
| The 120 conjugacy class representatives for t18n734 are not computed |
| Character table for t18n734 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.220521111330816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $3$ | 3.9.12.17 | $x^{9} + 6 x^{8} + 6 x^{6} + 27$ | $3$ | $3$ | $12$ | $C_3^2 : S_3 $ | $[2, 2]^{6}$ |
| 3.9.12.17 | $x^{9} + 6 x^{8} + 6 x^{6} + 27$ | $3$ | $3$ | $12$ | $C_3^2 : S_3 $ | $[2, 2]^{6}$ | |
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.12.0.1 | $x^{12} + x^{2} - x + 2$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 37 | Data not computed | ||||||