Properties

Label 18.2.24260512452...0752.2
Degree $18$
Signature $[2, 8]$
Discriminant $2^{33}\cdot 3^{24}$
Root discriminant $15.42$
Ramified primes $2, 3$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $S_3^2$ (as 18T9)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -6, 6, 0, 12, -15, 36, -18, -16, 36, -24, 15, 0, 12, -6, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^15 + 12*x^14 + 15*x^12 - 24*x^11 + 36*x^10 - 16*x^9 - 18*x^8 + 36*x^7 - 15*x^6 + 12*x^5 + 6*x^3 - 6*x^2 + 1)
 
gp: K = bnfinit(x^18 - 6*x^15 + 12*x^14 + 15*x^12 - 24*x^11 + 36*x^10 - 16*x^9 - 18*x^8 + 36*x^7 - 15*x^6 + 12*x^5 + 6*x^3 - 6*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{18} - 6 x^{15} + 12 x^{14} + 15 x^{12} - 24 x^{11} + 36 x^{10} - 16 x^{9} - 18 x^{8} + 36 x^{7} - 15 x^{6} + 12 x^{5} + 6 x^{3} - 6 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2426051245220667850752=2^{33}\cdot 3^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.42$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{5}$, $\frac{1}{21} a^{15} - \frac{1}{21} a^{14} - \frac{1}{7} a^{13} - \frac{2}{21} a^{12} + \frac{1}{21} a^{11} + \frac{2}{21} a^{10} + \frac{1}{21} a^{9} + \frac{2}{7} a^{8} + \frac{2}{7} a^{7} + \frac{1}{3} a^{6} - \frac{4}{21} a^{5} - \frac{2}{7} a^{4} + \frac{1}{3} a^{3} - \frac{8}{21} a^{2} + \frac{5}{21} a - \frac{2}{21}$, $\frac{1}{4683} a^{16} + \frac{106}{4683} a^{15} + \frac{157}{1561} a^{14} - \frac{159}{1561} a^{13} - \frac{113}{1561} a^{12} + \frac{174}{1561} a^{11} - \frac{80}{1561} a^{10} - \frac{664}{4683} a^{9} + \frac{237}{1561} a^{8} + \frac{1678}{4683} a^{7} + \frac{10}{4683} a^{6} + \frac{84}{223} a^{5} + \frac{423}{1561} a^{4} + \frac{723}{1561} a^{3} - \frac{678}{1561} a^{2} - \frac{9}{1561} a + \frac{563}{4683}$, $\frac{1}{79611} a^{17} - \frac{4}{79611} a^{16} + \frac{407}{79611} a^{15} + \frac{9484}{79611} a^{14} - \frac{9194}{79611} a^{13} - \frac{1891}{26537} a^{12} + \frac{1296}{26537} a^{11} - \frac{1024}{79611} a^{10} + \frac{8858}{79611} a^{9} - \frac{6956}{79611} a^{8} - \frac{35383}{79611} a^{7} - \frac{21190}{79611} a^{6} + \frac{299}{669} a^{5} + \frac{757}{11373} a^{4} - \frac{2158}{26537} a^{3} - \frac{580}{26537} a^{2} + \frac{11561}{79611} a + \frac{30392}{79611}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5041.758308629595 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3^2$ (as 18T9):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 9 conjugacy class representatives for $S_3^2$
Character table for $S_3^2$

Intermediate fields

\(\Q(\sqrt{2}) \), 3.1.216.1, 3.1.108.1, 6.2.1492992.5 x2, 6.2.373248.1, 6.2.1492992.4, 9.1.4353564672.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 sibling: data not computed
Degree 9 sibling: data not computed
Degree 12 sibling: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.11.1$x^{6} + 14$$6$$1$$11$$D_{6}$$[3]_{3}^{2}$
2.12.22.60$x^{12} - 84 x^{10} + 444 x^{8} + 32 x^{6} - 272 x^{4} - 320 x^{2} + 64$$6$$2$$22$$D_6$$[3]_{3}^{2}$
3Data not computed