Normalized defining polynomial
\( x^{18} - 4 x^{17} + 5 x^{16} - x^{15} - 4 x^{13} + 6 x^{12} + 15 x^{11} - x^{10} + 60 x^{7} + 25 x^{6} + 64 x^{3} + 64 x^{2} + 20 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2389861611358642578125=5^{15}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} + \frac{1}{7} a^{14} + \frac{3}{7} a^{13} + \frac{1}{7} a^{12} - \frac{1}{7} a^{11} + \frac{1}{7} a^{10} - \frac{2}{7} a^{9} - \frac{3}{7} a^{8} - \frac{1}{7} a^{7} - \frac{3}{7} a^{5} + \frac{2}{7} a^{4} - \frac{3}{7} a^{2} + \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{133} a^{16} - \frac{2}{133} a^{15} - \frac{2}{19} a^{14} + \frac{20}{133} a^{13} + \frac{3}{133} a^{12} + \frac{25}{133} a^{11} + \frac{30}{133} a^{10} - \frac{53}{133} a^{9} - \frac{6}{133} a^{8} - \frac{53}{133} a^{7} + \frac{60}{133} a^{6} + \frac{25}{133} a^{5} - \frac{27}{133} a^{4} + \frac{46}{133} a^{3} + \frac{3}{133} a^{2} + \frac{45}{133} a + \frac{52}{133}$, $\frac{1}{3325036900717} a^{17} + \frac{11778030749}{3325036900717} a^{16} + \frac{32287422905}{3325036900717} a^{15} + \frac{974745058759}{3325036900717} a^{14} - \frac{200134429162}{3325036900717} a^{13} - \frac{225102781499}{3325036900717} a^{12} + \frac{150412542461}{475005271531} a^{11} + \frac{1010422044717}{3325036900717} a^{10} + \frac{50033342028}{3325036900717} a^{9} - \frac{1585202501755}{3325036900717} a^{8} - \frac{257057708056}{3325036900717} a^{7} + \frac{429332549701}{3325036900717} a^{6} + \frac{1074834199997}{3325036900717} a^{5} + \frac{1224340117828}{3325036900717} a^{4} + \frac{1075622607015}{3325036900717} a^{3} - \frac{675000409416}{3325036900717} a^{2} - \frac{1487841397450}{3325036900717} a - \frac{991283206661}{3325036900717}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2645.14483524 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $D_{18}$ |
| Character table for $D_{18}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.1.23.1, 6.2.66125.1, 9.1.4372515625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | $18$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | $18$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |