Normalized defining polynomial
\( x^{18} - 10 x^{15} + 63 x^{12} + 106 x^{9} + 113 x^{6} + 108 x^{3} - 27 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2360626893120550220070912=2^{24}\cdot 3^{20}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{2}{9} a^{5} + \frac{2}{9} a^{4}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{2}{9} a^{6} - \frac{2}{9} a^{4}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} + \frac{2}{9} a^{7} + \frac{2}{9} a^{4}$, $\frac{1}{27} a^{14} + \frac{1}{27} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{2}{27} a^{8} + \frac{1}{3} a^{7} + \frac{11}{27} a^{5} + \frac{2}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{322191} a^{15} + \frac{1342}{322191} a^{12} - \frac{1}{9} a^{10} - \frac{11302}{322191} a^{9} - \frac{137221}{322191} a^{6} - \frac{2}{9} a^{4} - \frac{1780}{11933} a^{3} + \frac{3910}{11933}$, $\frac{1}{966573} a^{16} + \frac{1}{966573} a^{15} - \frac{34457}{966573} a^{13} - \frac{34457}{966573} a^{12} - \frac{118699}{966573} a^{10} - \frac{11302}{966573} a^{9} + \frac{113372}{966573} a^{7} + \frac{435563}{966573} a^{6} + \frac{1}{3} a^{5} + \frac{42392}{107397} a^{4} + \frac{10153}{35799} a^{3} - \frac{1}{3} a^{2} - \frac{8023}{35799} a - \frac{8023}{35799}$, $\frac{1}{966573} a^{17} - \frac{1}{966573} a^{15} + \frac{1342}{966573} a^{14} + \frac{34457}{966573} a^{12} + \frac{24497}{966573} a^{11} - \frac{96095}{966573} a^{9} - \frac{137221}{966573} a^{8} - \frac{1}{3} a^{7} - \frac{113372}{966573} a^{6} - \frac{99551}{322191} a^{5} - \frac{1}{3} a^{4} + \frac{17273}{107397} a^{3} - \frac{8023}{35799} a^{2} - \frac{1}{3} a + \frac{8023}{35799}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 631116.3194500087 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{7}) \), 3.1.756.1, 3.1.108.1, 6.2.7112448.1 x2, 6.2.16003008.1, 6.2.64012032.1, 9.1.20739898368.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.12.16.13 | $x^{12} + 12 x^{10} + 12 x^{8} + 8 x^{6} + 32 x^{4} - 16 x^{2} + 16$ | $6$ | $2$ | $16$ | $D_6$ | $[2]_{3}^{2}$ | |
| $3$ | 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
| 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |