Properties

Label 18.2.23162752360...0000.2
Degree $18$
Signature $[2, 8]$
Discriminant $2^{12}\cdot 3^{32}\cdot 5^{15}$
Root discriminant $42.79$
Ramified primes $2, 3, 5$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $C_2\times C_3:S_3$ (as 18T12)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![729, 0, 0, 972, 0, 0, 1215, 0, 0, 0, 0, 0, 135, 0, 0, -48, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 48*x^15 + 135*x^12 + 1215*x^6 + 972*x^3 + 729)
 
gp: K = bnfinit(x^18 - 48*x^15 + 135*x^12 + 1215*x^6 + 972*x^3 + 729, 1)
 

Normalized defining polynomial

\( x^{18} - 48 x^{15} + 135 x^{12} + 1215 x^{6} + 972 x^{3} + 729 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(231627523606480125000000000000=2^{12}\cdot 3^{32}\cdot 5^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $42.79$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{3} a^{4}$, $\frac{1}{3} a^{5}$, $\frac{1}{9} a^{6}$, $\frac{1}{9} a^{7}$, $\frac{1}{9} a^{8}$, $\frac{1}{54} a^{9} - \frac{1}{18} a^{6} - \frac{1}{6} a^{3} - \frac{1}{2}$, $\frac{1}{54} a^{10} - \frac{1}{18} a^{7} - \frac{1}{6} a^{4} - \frac{1}{2} a$, $\frac{1}{54} a^{11} - \frac{1}{18} a^{8} - \frac{1}{6} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{486} a^{12} + \frac{1}{162} a^{9} - \frac{1}{18} a^{6} + \frac{1}{18} a^{3} + \frac{1}{3}$, $\frac{1}{486} a^{13} + \frac{1}{162} a^{10} - \frac{1}{18} a^{7} + \frac{1}{18} a^{4} + \frac{1}{3} a$, $\frac{1}{1458} a^{14} + \frac{1}{486} a^{11} - \frac{1}{18} a^{8} - \frac{5}{54} a^{5} + \frac{1}{9} a^{2}$, $\frac{1}{49572} a^{15} - \frac{5}{16524} a^{12} - \frac{1}{918} a^{9} - \frac{8}{459} a^{6} - \frac{31}{612} a^{3} - \frac{33}{68}$, $\frac{1}{49572} a^{16} - \frac{5}{16524} a^{13} - \frac{1}{918} a^{10} - \frac{8}{459} a^{7} - \frac{31}{612} a^{4} - \frac{33}{68} a$, $\frac{1}{148716} a^{17} - \frac{5}{49572} a^{14} - \frac{1}{2754} a^{11} - \frac{8}{1377} a^{8} - \frac{31}{1836} a^{5} + \frac{35}{204} a^{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 26841273.77392141 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_3:S_3$ (as 18T12):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 12 conjugacy class representatives for $C_2\times C_3:S_3$
Character table for $C_2\times C_3:S_3$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.1.24300.1, 3.1.300.1, 3.1.972.2, 3.1.6075.1, 6.2.2952450000.1, 6.2.118098000.8, 6.2.450000.1, 6.2.184528125.2, 9.1.43046721000000.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
$3$3.6.10.3$x^{6} + 36$$3$$2$$10$$D_{6}$$[5/2]_{2}^{2}$
3.12.22.96$x^{12} + 9 x^{11} - 18 x^{10} + 30 x^{9} + 18 x^{7} + 36 x^{6} - 27 x^{5} + 27 x^{4} - 27 x^{3} + 27 x^{2} + 36$$6$$2$$22$$D_6$$[5/2]_{2}^{2}$
$5$5.6.5.1$x^{6} - 5$$6$$1$$5$$D_{6}$$[\ ]_{6}^{2}$
5.12.10.1$x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$$6$$2$$10$$D_6$$[\ ]_{6}^{2}$