Normalized defining polynomial
\( x^{18} - 3 x^{17} - 9 x^{15} + 30 x^{14} + 12 x^{13} - 87 x^{11} - 39 x^{10} + 133 x^{9} + 177 x^{8} - 48 x^{7} - 261 x^{6} - 156 x^{5} + 129 x^{4} + 240 x^{3} + 135 x^{2} + 30 x + 20 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2261987535219532470703125=3^{32}\cdot 5^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{14} + \frac{1}{10} a^{12} + \frac{1}{10} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{10} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{10} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{15} + \frac{1}{10} a^{13} + \frac{1}{10} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{10} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{100} a^{16} + \frac{1}{100} a^{15} - \frac{1}{20} a^{14} - \frac{9}{50} a^{13} - \frac{17}{100} a^{12} - \frac{6}{25} a^{11} - \frac{43}{100} a^{10} - \frac{3}{100} a^{9} - \frac{11}{25} a^{8} - \frac{13}{50} a^{7} - \frac{1}{100} a^{6} - \frac{7}{25} a^{5} - \frac{7}{50} a^{4} - \frac{1}{5} a^{3} + \frac{9}{20} a^{2} - \frac{1}{5}$, $\frac{1}{8165181308402200} a^{17} - \frac{1107977017497}{2041295327100550} a^{16} - \frac{28983675025203}{1020647663550275} a^{15} - \frac{141766698683313}{8165181308402200} a^{14} - \frac{53306222641}{56311595230360} a^{13} + \frac{1626316832449869}{8165181308402200} a^{12} + \frac{3371483577131663}{8165181308402200} a^{11} - \frac{758966312313633}{4082590654201100} a^{10} + \frac{1380348127231183}{8165181308402200} a^{9} - \frac{22305245965515}{163303626168044} a^{8} + \frac{3815880098446703}{8165181308402200} a^{7} - \frac{3266433040755179}{8165181308402200} a^{6} + \frac{361939030345039}{4082590654201100} a^{5} - \frac{255806080064867}{4082590654201100} a^{4} - \frac{143337695314541}{326607252336088} a^{3} + \frac{191678506413929}{1633036261680440} a^{2} + \frac{132720717096673}{816518130840220} a + \frac{119305148371769}{408259065420110}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 265400.055751 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3:S_3.C_2$ (as 18T10):
| A solvable group of order 36 |
| The 6 conjugacy class representatives for $C_3^2 : C_4$ |
| Character table for $C_3^2 : C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 6.2.4100625.2 x2, 6.2.4100625.1 x2, 9.1.672605015625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 siblings: | 6.2.4100625.1, 6.2.4100625.2 |
| Degree 9 sibling: | 9.1.672605015625.1 |
| Degree 12 siblings: | Deg 12, Deg 12 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |