Normalized defining polynomial
\( x^{18} - 60 x^{15} - 558 x^{14} + 1116 x^{13} + 2499 x^{12} + 17460 x^{11} + 60390 x^{10} - 480272 x^{9} - 135864 x^{8} + 892350 x^{7} - 162705 x^{6} + 40765104 x^{5} - 64912734 x^{4} - 233119176 x^{3} + 446766822 x^{2} + 393171066 x - 871019771 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21795504923434979455845775529962328064=2^{12}\cdot 3^{45}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{6}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{6} a$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{6} a^{2}$, $\frac{1}{6} a^{12} + \frac{1}{3} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{13} + \frac{1}{3} a^{4} - \frac{1}{2} a$, $\frac{1}{18} a^{14} + \frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{1}{18} a^{11} - \frac{1}{18} a^{10} - \frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{18} a^{5} - \frac{1}{18} a^{4} - \frac{1}{18} a^{3} + \frac{2}{9} a^{2} + \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{18} a^{15} + \frac{1}{18} a^{12} + \frac{1}{18} a^{9} - \frac{7}{18} a^{6} + \frac{1}{9} a^{3} + \frac{1}{9}$, $\frac{1}{2628} a^{16} + \frac{37}{2628} a^{15} + \frac{13}{1314} a^{14} - \frac{19}{292} a^{13} + \frac{11}{292} a^{12} - \frac{11}{657} a^{11} + \frac{11}{657} a^{10} - \frac{19}{657} a^{9} + \frac{137}{438} a^{8} - \frac{155}{1314} a^{7} - \frac{307}{657} a^{6} + \frac{232}{657} a^{5} + \frac{325}{876} a^{4} - \frac{107}{876} a^{3} + \frac{8}{657} a^{2} + \frac{757}{2628} a - \frac{1283}{2628}$, $\frac{1}{4576297300443344871891800522230421354977208664426317431236444} a^{17} - \frac{150575808218686922559389726422045786437794386702755889697}{1525432433481114957297266840743473784992402888142105810412148} a^{16} - \frac{18943214816052733294625570117533834583952261136709243818793}{1144074325110836217972950130557605338744302166106579357809111} a^{15} + \frac{74568931108447612996131640139881722648521602014866833580005}{4576297300443344871891800522230421354977208664426317431236444} a^{14} + \frac{2161935437234287740872132381664722848170488748268344483509}{508477477827038319099088946914491261664134296047368603470716} a^{13} - \frac{66419076307221456076069906973783222153550847129191737552099}{1144074325110836217972950130557605338744302166106579357809111} a^{12} - \frac{99292669416182583320359967725025908589055031478385416573029}{2288148650221672435945900261115210677488604332213158715618222} a^{11} + \frac{11124861745438799155611423963350876252402690697769605492713}{381358108370278739324316710185868446248100722035526452603037} a^{10} + \frac{12455690129667077689745314213602417752058838437834046022249}{2288148650221672435945900261115210677488604332213158715618222} a^{9} - \frac{57058116509003019122189203987048046565699356758001687883718}{1144074325110836217972950130557605338744302166106579357809111} a^{8} + \frac{171469695574987821308546142528080434737511610486651149820747}{381358108370278739324316710185868446248100722035526452603037} a^{7} + \frac{129598419290789836217707728475516393442273934970186408418096}{1144074325110836217972950130557605338744302166106579357809111} a^{6} - \frac{1713265550161899056069593135887972927416606376913003511547787}{4576297300443344871891800522230421354977208664426317431236444} a^{5} + \frac{27842067136848013086779125283980564969323783798065323874979}{508477477827038319099088946914491261664134296047368603470716} a^{4} - \frac{202087674098169122326433851253292379386489214623144803169323}{2288148650221672435945900261115210677488604332213158715618222} a^{3} - \frac{2167186844753692848610517538671031046329013110462363306299461}{4576297300443344871891800522230421354977208664426317431236444} a^{2} - \frac{209674613169458450697313911430814125758469697419424724399251}{1525432433481114957297266840743473784992402888142105810412148} a + \frac{17017275539442178842533354134214139691447929493663144507301}{1144074325110836217972950130557605338744302166106579357809111}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 117503877267.76468 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{69}) \), 3.1.243.1, 6.2.2155347549.1, 9.1.2008387814976.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |