Normalized defining polynomial
\( x^{18} - 20 x^{15} + 96 x^{12} + 288 x^{9} - 1200 x^{6} + 896 x^{3} + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(207189157034762041833345024=2^{12}\cdot 3^{20}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{4} a^{6}$, $\frac{1}{4} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{16} a^{9} - \frac{1}{4} a^{3} - \frac{1}{2}$, $\frac{1}{16} a^{10} - \frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{16} a^{11} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{480} a^{12} + \frac{1}{240} a^{9} - \frac{3}{40} a^{6} - \frac{1}{30} a^{3} - \frac{1}{30}$, $\frac{1}{480} a^{13} + \frac{1}{240} a^{10} - \frac{3}{40} a^{7} - \frac{1}{30} a^{4} - \frac{1}{30} a$, $\frac{1}{480} a^{14} + \frac{1}{240} a^{11} - \frac{3}{40} a^{8} - \frac{1}{30} a^{5} - \frac{1}{30} a^{2}$, $\frac{1}{4800} a^{15} - \frac{1}{1200} a^{12} + \frac{11}{400} a^{9} + \frac{1}{24} a^{6} + \frac{1}{6} a^{3} - \frac{12}{25}$, $\frac{1}{14400} a^{16} + \frac{1}{14400} a^{15} - \frac{1}{1440} a^{14} - \frac{7}{7200} a^{13} + \frac{1}{2400} a^{12} + \frac{7}{360} a^{11} + \frac{7}{900} a^{10} - \frac{7}{225} a^{9} + \frac{1}{40} a^{8} + \frac{11}{90} a^{7} + \frac{13}{180} a^{6} - \frac{13}{180} a^{5} - \frac{1}{10} a^{4} + \frac{2}{45} a^{3} - \frac{22}{45} a^{2} + \frac{83}{450} a + \frac{73}{450}$, $\frac{1}{14400} a^{17} + \frac{1}{14400} a^{15} - \frac{1}{3600} a^{14} - \frac{1}{1440} a^{13} - \frac{7}{7200} a^{12} - \frac{7}{600} a^{11} + \frac{7}{360} a^{10} + \frac{7}{900} a^{9} + \frac{7}{72} a^{8} + \frac{1}{40} a^{7} + \frac{11}{90} a^{6} - \frac{1}{36} a^{5} - \frac{13}{180} a^{4} - \frac{1}{10} a^{3} - \frac{49}{150} a^{2} - \frac{22}{45} a + \frac{83}{450}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615728.7461734295 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), 3.1.87.1, 3.1.108.1, 6.2.219501.1, 6.2.284473296.3 x2, 6.2.284473296.1, 9.1.92169347904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.12.14.6 | $x^{12} + 3 x^{11} + 3 x^{10} - 6 x^{9} + 3 x^{8} + 9 x^{7} + 9 x^{4} + 9 x^{3} + 9$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |