Properties

Label 18.2.16664962779...3125.1
Degree $18$
Signature $[2, 8]$
Discriminant $5^{9}\cdot 7^{4}\cdot 1373^{4}$
Root discriminant $17.16$
Ramified primes $5, 7, 1373$
Class number $1$
Class group Trivial
Galois group 18T888

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, -3, -16, -16, -8, -17, 21, 67, 2, 117, -86, 71, -70, 39, -18, 11, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 2*x^17 + 11*x^16 - 18*x^15 + 39*x^14 - 70*x^13 + 71*x^12 - 86*x^11 + 117*x^10 + 2*x^9 + 67*x^8 + 21*x^7 - 17*x^6 - 8*x^5 - 16*x^4 - 16*x^3 - 3*x^2 - 3*x - 1)
 
gp: K = bnfinit(x^18 - 2*x^17 + 11*x^16 - 18*x^15 + 39*x^14 - 70*x^13 + 71*x^12 - 86*x^11 + 117*x^10 + 2*x^9 + 67*x^8 + 21*x^7 - 17*x^6 - 8*x^5 - 16*x^4 - 16*x^3 - 3*x^2 - 3*x - 1, 1)
 

Normalized defining polynomial

\( x^{18} - 2 x^{17} + 11 x^{16} - 18 x^{15} + 39 x^{14} - 70 x^{13} + 71 x^{12} - 86 x^{11} + 117 x^{10} + 2 x^{9} + 67 x^{8} + 21 x^{7} - 17 x^{6} - 8 x^{5} - 16 x^{4} - 16 x^{3} - 3 x^{2} - 3 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(16664962779853595703125=5^{9}\cdot 7^{4}\cdot 1373^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.16$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 7, 1373$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{407832414729721} a^{17} - \frac{85032934800056}{407832414729721} a^{16} + \frac{131842725621889}{407832414729721} a^{15} + \frac{194263016790035}{407832414729721} a^{14} - \frac{77189485873962}{407832414729721} a^{13} + \frac{4469018185335}{407832414729721} a^{12} - \frac{149826441669522}{407832414729721} a^{11} + \frac{134475847983214}{407832414729721} a^{10} + \frac{74658820249448}{407832414729721} a^{9} + \frac{68318668250401}{407832414729721} a^{8} - \frac{37218494810290}{407832414729721} a^{7} - \frac{46962727519329}{407832414729721} a^{6} - \frac{164978657017935}{407832414729721} a^{5} - \frac{8963388109433}{407832414729721} a^{4} + \frac{65056659309127}{407832414729721} a^{3} + \frac{6235013046859}{407832414729721} a^{2} + \frac{50218460770976}{407832414729721} a + \frac{198813495428677}{407832414729721}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4165.16833095 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T888:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 362880
The 36 conjugacy class representatives for t18n888
Character table for t18n888 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 9.1.92371321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ $18$ R R ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.6.4.1$x^{6} + 35 x^{3} + 441$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.10.0.1$x^{10} + 5 x^{2} - x + 5$$1$$10$$0$$C_{10}$$[\ ]^{10}$
1373Data not computed